
Rev. 2.4 7/23 Copyright © 2023 by Silicon Laboratories AN169

AN169

USBXPRESS® PROGRAMMER’S GUIDE

1. Introduction

The Silicon Laboratories USBXpress® Development Kit provides a complete host and device software solution for
interfacing Silicon Laboratories C8051F32x, C8051F34x, C8051F38x, C8051T32x, and C8051T62x USB MCUs
and CP210x communication bridges to the Universal Serial Bus (USB). No USB protocol or host device driver
expertise is required. Instead, a simple, high-level Application Program Interface (API) for both the host software
and device firmware is used to provide complete USB connectivity.

The USBXpress Development Kit includes Windows device drivers, Windows device driver installer, host interface
function library (host API) provided in the form of a Windows Dynamic Link Library (DLL), and device firmware
interface function library (C8051F32x, C8051F34x, C8051F38x, C8051T32x, and C8051T62x devices only).

Figure 1. USBXpress Data Flow

Relevant Devices
This application note applies to the following devices:
C8051F32x, C8051F34x, C8051F38x, C8051T32x, C8051T62x, CP2101, CP2102, CP2102N, CP2103, CP2104,
CP2105, CP2108, CP2109

User Application
(eg. VC++ custom app)

USBXpress DLL / API

Direct Access Driver

PC

USB Root Hub

USB

USBXpress Firmware
Library

User Firmware

'F32x/'F34x/'F38x/'T32x/'T62x

CP210x
USB-UART Bridge

External RS-232
Transceiver or
UART Circuitry

User Application
(eg. VC++ custom app)

USBXpress DLL / API

Direct Access Driver

PC

USB Root Hub

USB

AN169

2 Rev. 2.4

2. Direct Access Versions

The Direct Access v4.0 and above driver incorporates Microsoft's WinUSB driver rather than the proprietary driver
of v3.x, and both the underlying driver and the DLL have changed. To use Direct Access v4.0, install the latest
driver from the website (www.silabs.com/interface-software) and upgrade the DLL.

The API to the DLL remains unchanged, but there is one new API call added to the library: SI_CancelIo(). This API
call replaces CancelIo() and should be used if the software calls SI_Read() or SI_Write() in overlapped mode and
the software needs to cancel I/O operations. The SI_CancelIo() function cancels read and write requests in both
the DLL buffer and the driver buffer, whereas CancelIo() only cancels requests in the driver buffer, leaving
outstanding requests in the DLL.

The AN220 Driver Customization software provides an option to customize either the v4.0 and above driver or the
v3.x driver for legacy applications. Customizations of the v4.0 and above WinUSB driver will still require
recertification through Microsoft. The AN220 software can be found here: www.silabs.com/interface-appnotes.

http://www.silabs.com/interface-software
http://www.silabs.com/interface-appnotes
http://www.silabs.com/interface-software
http://www.silabs.com/interface-appnotes

AN169

Rev. 2.4 3

3. Host API Functions

The host API is provided in the form of a Windows Dynamic Link Library (DLL). The host interface DLL
communicates with the USB device via the provided device driver and the operating system's USB stack. The
following is a list of the host API functions available:

SI_GetNumDevices() - Returns the number of devices connected
SI_GetProductString() - Returns a descriptor for a device
SI_Open() - Opens a device and returns a handle
SI_Close() - Cancels pending IO and closes a device
SI_Read() - Reads a block of data from a device
SI_Write() - Writes a block of data to a device
SI_CancelIo() - Cancels outstanding overlapped IO
SI_FlushBuffers() - Flushes the TX and RX buffers for a device
SI_SetTimeouts() - Sets read and write block timeouts
SI_GetTimeouts () - Gets read and write block timeouts
SI_CheckRXQueue() - Returns the number of bytes in a device's RX queue
SI_SetBaudRate() - Sets the specified CP210x Baud Rate
SI_SetBaudDivisor() - Sets the specified CP210x Baud Divisor Value
SI_SetLineControl() - Sets the CP210x device Line Control
SI_SetFlowControl() - Sets the CP210x device Flow Control
SI_GetModemStatus() - Gets the CP210x device Modem Status
SI_SetBreak() - Sets the Break State for CP210x device.
SI_ReadLatch() - Gets the port latch value from a CP2103 device
SI_WriteLatch() - Sets the port latch value to a CP2103 device
SI_GetPartNumber() - Gets the CP210x device part number
SI_DeviceIOControl() - Allows sending low-level commands to the device driver
SI_GetDLLVersion() - Gets the version of the DLL currently in use
SI_GetDriverVersion() - Gets the version of the Direct Access driver

In general, the user initiates communication with the target USB device(s) by making a call to SI_GetNumDevices.
This call will return the number of target devices. This number is then used as a range when calling
SI_GetProductString to build a list of device serial numbers or product description strings.

To access a device, it must first be opened by a call to SI_Open using an index determined from the call to
SI_GetNumDevices. The SI_Open function will return a handle to the device that is used in all subsequent
accesses. Data I/O is performed using the SI_Write and SI_Read functions. When I/O operations are complete, the
device is closed by a call to SI_Close.

Additional functions are provided to flush the transmit and receive buffers (SI_FlushBuffers), set receive and
transmit timeouts (SI_SetTimeouts), check the receive buffer's status (SI_CheckRXQueue), and miscellaneous
device control (SI_DeviceIOControl).

For CP210x devices, functions are available to set the baud rate (SI_SetBaudRate); set the baud divisor
(SI_SetBaudDivisior); adjust the line control settings such as word length, stop bits, and parity (SI_SetLineControl);
set hardware handshaking, software handshaking, and modem control signals (SI_SetFlowControl); and get modem
status (SI_GetModemStatus). Additional functions are available for CP2102N/3/4/5/8 devices to get (SI_ReadLatch)
and set (SI_WriteLatch) the values of the additional GPIO pins available on the device. In order to differentiate
between CP210x devices, a function (SI_GetPartNumber) has been provided to return the part number.

Each of these functions are described in detail in the following sections. Type definitions and constants are defined
in "Appendix D—Definitions from C++ header file SiUSBXp.h”.

AN169

4 Rev. 2.4

3.1. SI_GetNumDevices
Description: This function returns the number of devices connected to the host.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9/

Prototype: SI_STATUS SI_GetNumDevices (LPDWORD NumDevices)

Parameters: 1. NumDevices—Address of a DWORD variable that will contain the number of devices
connected on return.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

3.2. SI_GetProductString
Description: This function returns a null terminated serial number (S/N) string or product description string for

the device specified by an index passed in DeviceNum. The index for the first device is 0 and the
last device is the value returned by SI_GetNumDevices – 1.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_GetProductString (DWORD DeviceNum, LPVOID DeviceString,
DWORD Options)

Parameters: 1. DeviceNum—Index of the device for which the product description string or serial number
string is desired.

2. DeviceString—Variable of type SI_DEVICE_STRING which will contain a NULL terminated
device descriptor or serial number string on return.

3. Options—DWORD containing flags to determine if DeviceString contains a serial number,
product description, Vendor ID, or Product ID string. See "Appendix D—Definitions from C++
header file SiUSBXp.h” for flags.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

AN169

Rev. 2.4 5

3.3. SI_Open
Description: Opens a device (using device number as returned by SI_GetNumDevices) and returns a handle

which will be used for subsequent accesses.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_Open (DWORD DeviceNum, HANDLE *Handle)

Parameters: 1. DeviceNum—Device index. 0 for first device, 1 for 2nd, etc.

2. Handle—Pointer to a variable where the handle to the device will be stored. This handle will be
used by all subsequent accesses to the device.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER or
SI_GLOBAL_DATA_ERROR

3.4. SI_Close
Description: Closes an open device using the handle provided by SI_Open and sets the handle to

INVALID_HANDLE_VALUE.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_Close (HANDLE Handle)

Parameters: 1. Handle—Handle to the device to close as returned by SI_Open.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE or
SI_SYSTEM_ERROR_CODE or
SI_GLOBAL_DATA_ERROR

AN169

6 Rev. 2.4

3.5. SI_Read
Description: Reads the available number of bytes into the supplied buffer and retrieves the number of bytes

that were read (this can be less than the number of bytes requested). This function returns syn-
chronously if the overlapped object is set to NULL (this happens by default) but will not block sys-
tem execution. If an initialized OVERLAPPED object is passed then the function returns
immediately. If the read completed then the status will be SI_SUCCESS but if I/O is still pending
then it will return STATUS_IO_PENDING. If STATUS_IO_PENDING is returned, the OVER-
LAPPED object can then be waited on using WaitForSingleObject(), and retrieve data or cancel
using GetOverlappedResult() (as documented on MSDN by Microsoft) or SI_CancelIo() respec-
tively. This functionality allows for multiple reads to be issued and waited on at a time. If any data
is available when SI_Read is called it will return so check NumBytesReturned to determine if all
requested data was returned. To make sure that SI_Read returns the requested number of bytes
use SI_CheckRxQueue() described in Section "3.11. SI_CheckRXQueue" on page 9.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_Read (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToRead,
DWORD *NumBytesReturned, OVERLAPPED* o = NULL)

Parameters: 1. Handle—Handle to the device to read as returned by SI_Open.

2. Buffer—Address of a character buffer to be filled with read data.

3. NumBytesToRead—Number of bytes to read from the device into the buffer (0–64 kB).

4. NumBytesReturned—Address of a DWORD which will contain the number of bytes actually
read into the buffer on return.

5. (Optional)—Address of an initialized OVERLAPPED object that can be used for asynchronous
reads.

Return Value: SI_STATUS = SI_SUCCESS or
SI_READ_ERROR or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE or
SI_SI_READ_TIMED_OUT or
SI_IO_PENDING or
SI_SYSTEM_ERROR_CODE or
SI_INVALID_REQUEST_LENGTH or
SI_DEVICE_IO_FAILED

AN169

Rev. 2.4 7

3.6. SI_Write
Description: Writes the specified number of bytes from the supplied buffer to the device. This function returns

synchronously if the overlapped object is set to NULL (this happens by default) but will not block
system execution. An initialized OVERLAPPED object may be specified and waited on just as
described in the description for SI_Read(), Section "3.5. SI_Read" on page 6.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_Write (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToWrite,
DWORD *NumBytesWritten, OVERLAPPED* o = NULL)

Parameters: 1. Handle—Handle to the device to write as returned by SI_Open.

2. Buffer—Address of a character buffer of data to be sent to the device.

3. NumBytesToWrite—Number of bytes to write to the device (0–4096 bytes).

4. NumBytesWritten—Address of a DWORD which will contain the number of bytes actually
written to the device.

5. (Optional)—Address of an initialized OVERLAPPED object that can be used for asynchronous
writes.

Return Value: SI_STATUS = SI_SUCCESS or
SI_WRITE_ERROR or
SI_INVALID_REQUEST_LENGTH or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE or
SI_WRITE_TIMED_OUT or
SI_IO_PENDING or
SI_SYSTEM_ERROR_CODE or
SI_DEVICE_IO_FAILED

3.7. SI_CancelIo
Description: Cancels any pending IO on a device opened with an OVERLAPPED object.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_CancelIo (HANDLE Handle)

Parameters: 1. Handle—Handle to the device to write as returned by SI_Open.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE or
SI_SYSTEM_ERROR_CODE or
SI_GLOBAL_DATA_ERROR

AN169

8 Rev. 2.4

3.8. SI_FlushBuffers
Description: On USB MCU devices, this function flushes both the receive buffer in the Direct Access device

driver and the transmit buffer in the device. Note: Parameter 2 and 3 have no effect and any
value can be passed when used with USB MCU devices.
On CP210x devices, this function operates in accordance with parameters 2 and 3. If parameter
2 (FlushTransmit) is non-zero, the CP210x device’s UART transmit buffer is flushed. If parameter
3 (FlushReceive) is non-zero, the CP210x device’s UART receive buffer is flushed. If parameters
2 and 3 are both non-zero, then both the CP210x device UART transmit buffer and UART
receive buffer are flushed.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_FlushBuffers (HANDLE Handle, BYTE FlushTransmit,
BYTE FlushReceive)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. FlushTransmit—Set to a non-zero value to flush the CP210x UART transmit buffer.

3. FlushReceive—Set to a non-zero value to flush the receive buffer.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE or
SI_SYSTEM_ERROR_CODE

3.9. SI_SetTimeouts
Description: Sets the read and write timeouts. Timeouts are used for SI_Read and SI_Write when called syn-

chronously (OVERLAPPED* o is set to NULL). The default value for timeouts is INFINITE
(0xFFFFFFFF), but they can be set to wait for any number of milliseconds between 0x0 and
0xFFFFFFFE.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetTimeouts (DWORD ReadTimeout, DWORD WriteTimeout)

Parameters: 1. ReadTimeout—SI_Read operation timeout (in milliseconds).

2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED

AN169

Rev. 2.4 9

3.10. SI_GetTimeouts
Description: Returns the current read and write timeouts. If a timeout value is 0xFFFFFFFF (INFINITE) it has

been set to wait infinitely; otherwise the timeouts are specified in milliseconds.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_GetTimeouts (LPDWORD ReadTimeout, LPDWORD WriteTimeout)

Parameters: 1. ReadTimeout—SI_Read operation timeout (in milliseconds).

2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_PARAMETER or
SI_DEVICE_IO_FAILED

3.11. SI_CheckRXQueue
Description: Returns the number of bytes in the receive queue and a status value that indicates if an overrun

(SI_QUEUE_OVERRUN) has occurred and if the RX queue is ready (SI_QUEUE_READY) for
reading. Upon indication of an Overrun condition it is recommended that data transfer be
stopped and all buffers be flushed using the SI_FlushBuffers command.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_CheckRXQueue (HANDLE Handle, LPDWORD NumBytesInQueue,
LPDWORD QueueStatus)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. NumBytesInQueue—Address of a DWORD variable that contains the number of bytes
currently in the receive queue on return.

3. QueueStatus—Address of a DWORD variable that contains the SI_RX_EMPTY (also
SI_RX_NO_OVERRUN), SI_RX_OVERRUN, or SI_RX_READY flag.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

AN169

10 Rev. 2.4

3.12. SI_SetBaudRate
Description: Sets the Baud Rate. Refer to the device data sheet for a list of Baud Rates supported by the

device.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetBaudRate (HANDLE Handle, DWORD dwBaudRate)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. dwBaudRate—A DWORD value specifying the Baud Rate to set.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_BAUDRATE or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER or
SI_DEVICE_IO_FAILED

3.13. SI_SetBaudDivisor
Description: Sets the Baud Rate directly by using a specific divisor value. This function is obsolete; use

SI_SetBaudRate instead.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetBaudDivisor (HANDLE Handle, WORD wBaudDivisor)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. wBaudDivisor—A WORD value specifying the Baud Divisor to set.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER or
SI_DEVICE_IO_FAILED

AN169

Rev. 2.4 11

3.14. SI_SetLineControl
Description: Adjusts the line control settings: word length, stop bits, and parity. Refer to the device data sheet

for valid line control settings.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetLineControl (HANDLE Handle, WORD wLineControl)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. wLineControl—A WORD variable that contains the desired line control settings. Possible input
settings are as follows:

Bits 0–3 Number of Stop bits
0: 1 stop bit;
1: 1.5 stop bits;
2: 2 stop bits

Bits 4–7 Parity
0: None
1: Odd
2: Even
3: Mark
4: Space

Bits 8–15 Number of bits per word
5, 6, 7, or 8

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

AN169

12 Rev. 2.4

3.15. SI_SetFlowControl
Description: Adjusts the following flow control settings: set hardware handshaking, software handshaking,

and modem control signals. See "Appendix D—Definitions from C++ header file SiUSBXp.h” for
pin characteristic definitions.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetFlowControl (HANDLE Handle, BYTE bCTS_MaskCode,
BYTE bRTS_MaskCode, BYTE bDTR_MaskCode, BYTE bDSRMaskCode,
BYTE bDCD_MaskCode, BOOL bFlowXonXoff)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. bCTS_MaskCode—The CTS pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

3. bRTS_MaskCode—The RTS pin characteristic must be as follows:
SI_HELD_ACTIVE,
SI_HELD_INACTIVE,
SI_FIRMWARE_CONTROLLED or
SI_TRANSMIT_ACTIVE_SIGNAL.

4. bDTR_MaskCode—The DTR pin characteristic must be as follows:
SI_HELD_INACTIVE,
SI_HELD_ACTIVE or
SI_FIRMWARE_CONTROLLED.

5. bDSR_MaskCode—The DSR pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

6. bDCD_MaskCode—The DCD pin characteristic must be as follows:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

7. bFlowXonXoff—Sets software flow control to be off if the value is 0, and on using the character
value specified if value is non-zero.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

AN169

Rev. 2.4 13

3.16. SI_GetModem Status
Description: Gets the Modem Status from the device. This includes the modem pin states.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_GetModemStatus (HANDLE Handle, PBYTE ModemStatus)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. lpbModemStatus—Address of a BYTE variable that contains the current states of the RS-232
modem control lines. The byte is defined as follows:

Bit 0: DTR State
Bit 1: RTS State
Bit 4: CTS State
Bit 5: DSR State
Bit 6: RI State
Bit 7: DCD State

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

3.17. SI_SetBreak
Description: Sends a break state (transmit or reset) to a CP210x device. Note that this function is not neces-

sarily synchronized with queued transmit data.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_SetBreak(HANDLE cyHandle, WORD wBreakState)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. wBreakState—The break state to set. If this value is a 0x0000 then the break is reset. If this
value is a 0x0001 then a break is transmitted.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

AN169

14 Rev. 2.4

3.18. SI_ReadLatch
Description: Gets the current port latch value (least significant four bits) from the device.

Supported Devices: CP2102N/3/4/5/8

Prototype: SI_STATUS SI_ReadLatch (HANDLE Handle, LPBYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. Latch—Pointer for a return port latch value (Logic High = 1, Logic Low = 0).

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTED or
SI_GLOBAL_DATA_ERROR or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER or
SI_DEVICE_IO_FAILED

3.19. SI_WriteLatch
Description: Sets the current port latch value (least significant four bits) from the device.

Supported Devices: CP2102N/3/4/5/8

Prototype: SI_STATUS SI_WriteLatch (HANDLE Handle, BYTE Mask, BYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. Mask—Determines which pins to change (Change = 1, Leave = 0).

3. Latch—Value to write to the port latch (Logic High = 1, Logic Low = 0).

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTED or
SI_GLOBAL_DATA_ERROR or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER or
SI_DEVICE_IO_FAILED

3.20. SI_GetPartNumber
Description: Retrieves the part number of the CP210x device for a given handle.

Supported Devices: CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_GetPartNumber (HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. Latch—Pointer for a return part number.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE or
SI_DEVICE_IO_FAILED

AN169

Rev. 2.4 15

3.21. SI_DeviceIOControl
Description: Interface for any miscellaneous device control functions. A separate call to SI_DeviceIOControl

is required for each input or output operation. A single call cannot be used to perform both an
input and output operation simultaneously. Refer to DeviceIOControl function definition on
MSDN Help for more details.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: SI_STATUS SI_DeviceIOControl (HANDLE Handle, DWORD IOControlCode,
LPVOID InBuffer, DWORD BytesToRead, LPVOID OutBuffer,
DWORD BytesToWrite, LPDWORD BytesSucceeded)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. IOControlCode—Code to select control function.

3. InBuffer—Pointer to input data buffer.

4. BytesToRead—Number of bytes to be read into InBuffer.

5. OutBuffer—Pointer to output data buffer.

6. BytesToWrite—Number of bytes to write from OutBuffer.

7. BytesSucceeded—Address of a DWORD variable that will contain the number of bytes read
by a input operation or the number of bytes written by a output operation on return.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE

3.22. SI_GetDLLVersion
Description: Obtains the version of the DLL that is currently in use. The version is returned in two DWORD

values, HighVersion and LowVersion. This corresponds to version A.B.C.D where A = (HighVer-
sion >> 16) & 0xFFFF, B = HighVersion & 0xFFFF, C = (LowVersion >> 16) & 0xFFFF and D =
LowVersion & 0xFFFF.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3,
CP2101/2/2N/3/4/5/8/9

Prototype: SI_STATUS SI_GetDLLVersion (DWORD* HighVersion,DWORD* LowVersion)

Parameters: 1. HighVersion—Address of a DWORD variable that will contain the top 32 bits of the DLL
version.

2. LowVersion—Address of a DWORD variable that will contain the bottom 32 bits of the DLL
version.

Return Value: SI_STATUS = SI_SUCCESS or SI_SYSTEM_ERROR_CODE

AN169

16 Rev. 2.4

3.23. SI_GetDriverVersion
Description: Obtains the version of the Driver that is currently in the Windows System directory. The version is

returned in two DWORD values, HighVersion and LowVersion. This corresponds to version
A.B.C.D where A = (HighVersion >> 16) & 0xFFFF, B = HighVersion & 0xFFFF, C = (LowVersion
>> 16) & 0xFFFF and D = LowVersion & 0xFFFF.

Note: Direct Access driver versions 4 and above do not support the SI_GetDriverVersion()

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3, CP2101/2/3/4/5/8/9

Prototype: SI_STATUS SI_GetDriverVersion (DWORD* HighVersion,DWORD* LowVersion)

Parameters: 1. HighVersion—Address of a DWORD variable that will contain the top 32 bits of the DLL
version.

2. LowVersion—Address of a DWORD variable that will contain the bottom 32 bits of the DLL
version.

Return Value: SI_STATUS = SI_SUCCESS or

SI_SYSTEM_ERROR_CODE or

SI_FUNCTION_NOT_SUPPORTED

AN169

Rev. 2.4 17

4. Device Interface Functions

The USBXpress firmware library implements a set of device interface functions that provide an Application
Programming Interface (API) on the C8051F32x, C8051F34x, C8051F38x, C8051T32x, and C8051T62x
microcontrollers. These functions provide a simplified I/O interface to the MCU's USB controller, thus eliminating
the need to understand and manage low-level USB hardware or protocol details. The API is provided in the form of
a library file precompiled under the Keil C51 tool chain. Device firmware must be developed using the Keil Software
C51 tool chain. The device interface functions available are:

USB_Clock_Start() - Initializes the USB clock
USB_Init() - Enables the USB interface
Block_Write() - Writes a buffer of data to the host via the USB
Block_Read() - Reads a buffer of data from the host via the USB
Get_Interrupt_Source() - Indicates the reason for an API interrupt
USB_Int_Enable() - Enables the API interrupts
USB_Int_Disable() - Disables API interrupts
USB_Disable() - Disables the USB interface
USB_Suspend() - Suspends the USB interrupts
USB_Get_Library_Version() - Returns the USBXpress firmware library version

The API is used in an interrupt-driven mode. The user must provide an interrupt handler located at vector address
0x0083 (interrupt 16) for the 'F320/1/6/7 devices, or at vector address 0x008B (interrupt 17) for the 'F34x/'F38x/
'T32x/'T62x devices. This handler will be called upon at any USB API interrupt. Once inside this ISR, a call to
Get_Interrupt_Source is used to determine the source of the interrupt (this call also clears the pending interrupt
flags).

The USBXpress firmware library operates the MCU's USB controller at USB Full Speed, and uses the Bulk
Transfer type with a data payload of 64 bytes per packet. Code developed for a specific MCU device family ('F320/
1, 'F326/7, 'F34x, 'F38x, 'T32x, or 'T62x) must use USBXpress device firmware libraries specific to that family. See
"Appendix C—Firmware Library Notes” for more technical details, and differences between the MCU device
firmware libraries.

Note: The USB0 hardware interrupt located at vector address 0x0043 (interrupt 8) is claimed by USBXpress, and
is used to handle low-level USB protocol details. The USB API interrupt (interrupt 16 for 'F320/1/6/7 devices and
interrupt 17 for 'F34x devices) is a virtual interrupt generated by the USBXpress firmware library whenever user
code needs to be notified of a USBXpress event. The events are defined in the description of the
Get_Interrupt_Source function.

Example ISR for Firmware API (interrupt 16 for 'F32x devices, interrupt 17 for 'F34x/'F38x/'T32x/'T62x devices):

void USB_API_TEST_ISR(void) interrupt 16
{

BYTE INTVAL = Get_Interrupt_Source();

if (INTVAL & TX_COMPLETE)
{

Block_Write(In_Packet, 8);
}

if (INTVAL & RX_COMPLETE)
{

Block_Read(Out_Packet, 8);
}

AN169

18 Rev. 2.4

if (INTVAL & DEV_CONFIGURED)
{

// Initialize all analog peripherals here. This interrupt
// tells the device that it can now use as much current as
// specified by the MaxPower descriptor.
Init(); // Note: example command, not part of the API

}

if (INTVAL & DEV_SUSPEND)
{

// Turn off all analog peripherals
Turn_Off_All(); // Note: example command, not part of the API

USB_Suspend(); // This function returns once resume
// signalling is present.

// Turn all analog peripherals back on
Init(); // Note: example command, not part of the API

}
}

4.1. USB_Clock_Start
Description: Enables the internal oscillator, initializes the clock multiplier, and sets the USB clock to 48 MHz

for USB full speed operation. If the clock multiplier is already initialized, the initialization proce-
dure is skipped. This function should be called before calling USB_Init or accessing any vari-
ables located in the upper 1024 bytes of XRAM (USB clock domain). CLKSEL[1:0] is not affected
by this function. See "Appendix A—SFRs that Should Not be Modified After Calling USB_-
Clock_Start and USB_Init” for more details. See "Appendix C—Firmware Library Notes” for
instructions on how to use the external oscillator as the USB clock.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Clock_Start (void)

Parameters: None

Return Value: None

AN169

Rev. 2.4 19

4.2. USB_Init
Description: Enables the USB interface, the USB clock recovery feature, and the use of Device Interface

Functions. On return, the USB interface is configured, and C8051F32x interrupts are globally
enabled. User software should not globally disable interrupts (set EA = 0), but should enable or
disable user configured interrupts individually using the interrupt's source interrupt enable flag
present in the IE, EIE1, or EIE2 SFRs. Before calling USB_Init, a call to USB_Clock_Start should
be made to configure the USB clock. See "Appendix A—SFRs that Should Not be Modified After
Calling USB_Clock_Start and USB_Init” for more details.

This function allows the user to specify the Vendor and Product IDs as well as Manufacturer,
Product Description, and Serial Number strings that are sent to the host as part of the device's
USB descriptor during the USB enumeration (device connection).

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Init (UINT VendorID, UINT ProductID, BYTE *ManufacturerStr,
BYTE *ProductStr, BYTE *SerialNumberStr, BYTE MaxPower,
BYTE PwAttributes, UINT bcdDevice)

Parameters: 1. VendorID—16-bit Vendor ID to be returned to the host's Operating System during USB
enumeration. Set to 0x10C4 to use the default Silicon Laboratories Vendor ID.

2. ProductID—16-bit Product ID to be returned to the host's Operating System during USB
enumeration. Set to 0xEA61 to associate with the default Direct Access driver.

3. ManufacturerStr—Pointer to a character string. See Appendix B for formatting. NULL pointer
should not be used because the library does not contain a default value for this string.

4. ProductStr—Pointer to a character string. See Appendix B for formatting. NULL pointer should
not be used because the library does not contain a default value for this string.

5. SerialNumberStr—Pointer to a character string. See Appendix B for formatting. NULL pointer
should not be used because the library does not contain a default value for this string.

6. MaxPower—Specifies how much bus current a device requires. Set to one half the number of
milliamperes required. The maximum allowed current is 500 milliamperes, and hence any
value above 0xFA will be automatically set to 0xFA. Example: Set to 0x32 to request 100 mA.

7. PwAttributes—Set bit 6 to 1 if the device is self-powered and to 0 if it is bus-powered. Set bit 5
to 1 if the device supports the remote wakeup feature. Bits 0 through 4 must be 0 and bit 7
must be 1. Example: Set to 0x80 to specify a bus-powered device that does not support
remote wakeup.

8. bcdDevice—The device's release number in BCD (binary-coded decimal) format. In BCD, the
upper byte represents the integer, the next four bits are tenths, and the final four bits are
hundredths. Example: 2.13 is denoted by 0x0213.

Return Value: None

AN169

20 Rev. 2.4

4.3. Block_Write
Description: Writes a buffer of data to the host via USB. Maximum block size is 4096 bytes. Returns the num-

ber of bytes actually written. This matches the parameter NumBytes unless an error condition
occurs. A zero is returned if Block_Write is called with NumBytes greater than 4096. If NumBytes
is greater than 64 bytes, the Bulk Transaction is split into multiple packets, each with a 64-byte
data payload (except last packet). Block_Write returns after copying the last packet to the device
USB transmit buffer. The completion of the transaction is then indicated by the TX_COMPLETE
USB API interrupt.

SI_Read can read from 0 to 64 kB of data. If Block_Write is called multiple times before SI_Read
is called then there is potential to read all of the data in the host's buffer depending on the
amount of data requested in the read. For example, if Block_Write is called 4 times, and sends a
byte of data in each block the host side can call SI_Read requesting 4 bytes and get the data
from all 4 of the Block_Writes at once.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: UINT Block_Write (BYTE *Buffer, UINT NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data to be written is stored.

2. NumBytes—Number of bytes to write (1–4096).

Return Value: Returns an unsigned 16-bit value indicating the number of bytes actually written.

4.4. Block_Read
Description: Reads a buffer of data sent from the host via USB. Maximum block size is 64 bytes. The block of

data is copied from the USB interface to the memory location pointed to by Buffer. The device
USB receive buffer will be emptied on return regardless of whether or not the entire buffer was
read by Block_Read. The maximum number of bytes to read from the device USB receive buffer
is specified in NumBytes. The number of bytes actually read (copied to Buffer) is returned by the
function. A zero is returned if there are no bytes to read. Typically, Block_Read should be called
after receiving a data packet, indicated by an RX_COMPLETE USB API interrupt.

Multiple calls to Block_Read might be needed to read all data sent via one SI_Write call if the
buffer sent to SI_Write is more than 64 bytes.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: BYTE Block_Read (BYTE *Buffer, BYTE NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data will be copied.

2. NumBytes—Number of bytes to read (1–64).

Return Value: Returns an unsigned 8-bit value indicating the number of bytes actually read.

AN169

Rev. 2.4 21

4.5. Get_Interrupt_Source
Description: Returns an 8-bit value indicating the reason(s) for the API interrupt, and clears the USB API

interrupt pending flag(s). This function should be called at the beginning of the user's interrupt
service routine to determine which event(s) has/have occurred.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: BYTE Get_Interrupt_Source (void)

Parameters: None

Return Value: Returns an unsigned 8-bit code indicating the reason(s) for the API interrupt. The code can indi-
cate more than one type of interrupt at the same time. The return values are coded as follows:

0x00 No USB API Interrupts have occurred
0x01 USB_RESET USB Reset Interrupt has occurred
0x02 TX_COMPLETE Transmit Complete Interrupt has occurred
0x04 RX_COMPLETE Receive Complete Interrupt has occurred
0x08 FIFO_PURGE Command received (and serviced) from the host to purge

the USB buffers
0x10 DEVICE_OPEN Device Instance Opened on host side
0x20 DEVICE_CLOSE Device Instance Closed on host side
0x40 DEV_CONFIGURED Device has entered configured state
0x80 DEV_SUSPEND USB suspend signaling present on bus

4.6. USB_Int_Enable
Description: A call to this function enables the USB API to generate interrupts. If enabled, a USB API interrupt

is generated on the following API events:

1. A USB Reset has occurred.

2. A transmit scheduled by a call to Block_Write has completed.

3. The RX buffer is ready to be serviced by a call to Block_Read.

4. A command from the host has caused the USB buffers to be flushed.

5. A Device Instance has been opened or closed by the host.

The cause of the interrupt can be determined by a call to Get_Interrupt_Source. If USB API inter-
rupts are enabled, the user must provide an interrupt service routine with the entry point located
at the interrupt 16 vector (Address = 0x0083). When this function is called, control will transfer to
the interrupt 16 handler within one ms, if any interrupts are currently pending.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Int_Enable (void)

Parameters: None

Return Value: None

AN169

22 Rev. 2.4

4.7. USB_Int_Disable
Description: This function disables the USB API interrupt generation.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Int_Disable (void)

Parameters: None

Return Value: None

4.8. USB_Disable
Description: This function disables the USB interface and the use of Device Interface Functions. On return,

the USB interface is no longer available and API interrupts are turned off. The clock multiplier is
turned off to reduce power consumption unless the system clock is set to the
'4x Clock Multiplier/2' option (CLKSEL[1:0] = 10b).

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Disable (void)

Parameters: None

Return Value: None

4.9. USB_Suspend
Description: This function allows devices to meet the USB suspend current specification. To be USB compli-

ant, a USB device must support the Suspend feature by reducing its total power consumption to
be under 500 µA. This function should only be called when the DEV_SUSPEND USB API inter-
rupt is received. All unnecessary user peripherals should be turned off before making this func-
tion call, and can be turned back on after the call returns. This routine powers down the USB
transceiver and the clock multiplier and then suspends the internal oscillator until USB resume
signaling occurs. Once USB traffic is detected, internal oscillator is restarted, USB_Clock_Start is
called, and then the function call returns to user code. Note: USB_Suspend will set the system
clock to internal oscillator by default. If system clock is set to clock multiplier when
USB_Suspend is called, that setting will be restored before this function returns. If it is necessary
to use any other setting for system clock, user code should modify CLKSEL on return from
USB_Suspend.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: void USB_Suspend (void)

Parameters: None

Return Value: None

AN169

Rev. 2.4 23

4.10. USB_Get_Library_Version
Description: This function returns the USBXpress firmware library version number in BCD. This function is

available in USBXpress firmware libraries from release 2.4 and above. Example: Rev. 2.41 is
returned as 0x0241.

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Prototype: UINT USB_Get_Library_Version (void)

Parameters: None

Return Value: Returns the USBXpress firmware library version number as an unsigned 16-bit value in BCD for-
mat.

AN169

24 Rev. 2.4

APPENDIX A—SFRS THAT SHOULD NOT BE MODIFIED AFTER
CALLING USB_CLOCK_START AND USB_INIT

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

The following is a list of SFRs configured by the API. These should not be altered at any time after the first call to
USB_Clock_Start or USB_Init. Most of these SFRs are dedicated to the USB peripheral on the chip and should be
of no concern to the programmer under most circumstances.

Off-Limits USB SFRs—USB0XCN, USB0ADR, and USB0DAT

Off-Limits Other SFRs—CLKMUL, OSCICN (Only bits 5–7 are off-limits), CLKSEL (Only bits 4–6 are off-limits).
These three SFRs are used to enable the internal oscillator, engage the 4x clock multiplier to 48 MHz, and to use
that as the clock for the USB core. For the API to function properly, these should not be modified.

API—User Shared SFRs:

The CLKSEL SFR is used for choosing both the system clock source and USB clock source. Care should be used
to OR in the system clock desired into Bits 1–0, so as not to disturb Bits 6–4, which are the USB clock selection
bits.

The OSCICN SFR is used to control the internal oscillator. The IFCN[1:0] bits can be modified as required by the
user to modify the system clock frequency. Note that the IFCN bits do not affect the 12 MHz clock multiplier input or
the USB clock. Care should be taken to preserve bits 5–7 while modifying the IFCN bits.

AN169

Rev. 2.4 25

APPENDIX B—FORMAT OF USER-DEFINED PRODUCT

DESCRIPTION AND SERIAL NUMBER STRINGS

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

It is possible for the API to use strings defined and allocated in user firmware instead of the API default strings. The
syntax for defining and using custom strings is:

unsigned char CustomString[]={number of string elements,0x03,'A',0,'B',0,'C',0...'Z',0};

The number of string elements = number of letters x 2 + 2, since every letter needs to be separated from the next
by zeros, and USB requires that the first element be the length, and the second element is 0x03, meaning string
descriptor type. This sounds harder than it is, for example:

//ABC Inc
unsigned char CustomString1[]={16,0x03,'A',0,'B',0,'C',0,' ',0,'I',0,'n',0,'c',0};

//Widget
unsigned char CustomString2[]={14,0x03,'W',0,'i',0,'d',0,'g',0,'e',0,'t',0};

//12345
unsigned char CustomString3[]={12,0x03,'1',0,'2',0,'3',0,'4',0,'5',0};

Then, if the Vendor ID and Product ID were 0xABCD and 0x1123, the call to USB_Init would be

USB_Init (0xABCD, 0x1123, CustomString1, CustomString2, CustomString3);

Note: It is useful to use the code keyword preceding the CustomString definitions, so that the strings are located in
code space.

AN169

26 Rev. 2.4

APPENDIX C—FIRMWARE LIBRARY NOTES

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3

Tool Chain

The USBXpress Firmware Library has been developed with the Keil C51 Tool Chain, and is distributed as a pre-
compiled library. Hence the user project should be built using the Keil C51 tool chain, with the USB_API.LIB
included as an external library. A header file USB_API.h with macro definitions and function prototypes is also
provided.

Memory-Model Concerns

The firmware API library was created using the small memory model. Using this library in a project with a default
memory model of large or compact can cause warnings to occur, depending on warning level settings. To avoid
this, set the default memory model to small, and override this setting wherever necessary by defining each function
with the large compiler keyword.

The “using” Keyword

The “using” keyword should not be used with the USB API ISR. This compile-time optimization is not supported by
the USBXpress library code that is used to create the virtual USB API interrupt (interrupt # 16).

Internal Functions and Variables

All internal function names and global variable names in the USBXpress firmware library begin with the prefix
“USBXcore”. To avoid conflict with these PUBLIC symbols that will, if duplicated, result in “MULTIPLE PUBLIC
DEFINITIONS” errors, global variables and function names in user firmware should not begin with this prefix.

Using External Oscillator or Clock

By default, USBXpress uses the internal 12 MHz oscillator along with the 4x Clock Multiplier as the USB Clock. To
override this, the user firmware can provide its own USB_Clock_Start function. The Keil linker will then override the
library function with the user-supplied function. If a high precision external crystal or clock is used, you may want to
turn off the USB clock recovery feature. To do this, user firmware code should include a dummy function definition
as shown below. This will override the corresponding internal function in the library.

void USBXcore_ClkRec(void) large { }

Saving XDATA Space

The USB_Init function parameters are passed in direct memory locations in user XDATA space determined by the
linker. If user firmware needs this contiguous space, these 17 bytes can be relocated to unused XDATA space
within the USBXpress reserved area. To do this, the following should be added to the command line while invoking
the linker (the value for “address” is shown in Table 1):

XDATA(?XD?_USB_INIT?USB_API(<address>))

Example: BL51.exe file1.obj,file2.obj,fileN.obj,USB_API.LIB TO prj1 RS(256) PL(68)
PW(78)XDATA(?XD?_USB_INIT?USB_API(0x03EF))

AN169

Rev. 2.4 27

Firmware Library Code Size and Other Details

The Flash memory occupied by the USBXpress firmware library depends on the number of library functions used
by the user application. This is because the linker includes only the called functions in the build. If all USBXpress
functions are used, the library would occupy ~3 kB of code memory. The low-level settings configured by the
USBXpress firmware library are shown in Table 1.

Table 1. Firmware Library Technical Details

C8051F320/1 C8051F326/7 C8051F340/1/2/3/4/5/6/7/8/
9/A/B/C/D

Internal Oscillator1 Enabled (OSCICN.7 = 1)

4x Clock Multiplier1 Enabled (Source: Internal Oscillator)

USB Clock Recovery1 Enabled (CLKREC = 0x89)

USB Clock Source1 Clock multiplier (48 MHz)

USB Speed Full Speed (12 Mbps)

USB Transfer Type Bulk Transfer

Max data payload size
(Control Endpoint, EP0)

64 bytes per data packet

Number of bulk data
endpoints used

2 (EP2 in Split Mode) 2 (EP1 in Split Mode) 2 (EP2 in Split Mode)

Max data payload size
(Bulk data endpoints)

64 bytes per data packet

Double buffering Enabled for both IN and
OUT endpoints (FIFO can
hold two packets each at
any time).

Enabled for OUT endpoint
(FIFO can hold two packets
at any time). Disabled for IN
endpoint.

Enabled for both IN and OUT
endpoints (FIFO can hold
two packets each at any
time).

XDATA space reserved

by the library2
448 bytes XDATA (0x0640
to 0x07FF) [includes USB
FIFO space]

128 bytes (0x0380 to
0x03FF) XDATA + 256 bytes
(0x00 to 0xFF) USB FIFO

448 bytes XDATA (0x0640 to
0x07FF) [includes USB FIFO
space]

Starting address to
relocate USB_Init
function parameters
(see " Saving XDATA
Space" on page 26)

0x07AF 0x03EF 0x07AF

USBXpress Firmware
Library Name

USBX_F320_1.LIB USBX_F326_7.LIB USBX_F34X.LIB

C8051F380/1/2/3/4/5/6/7 C8051T620/1 and
C8051T320/1/2/3

C8051T622/3 and
C8051T326/7

Notes:
1. The clock settings listed in this table are valid only if the default USBXpress clock functions (USB_Clock_Start and

USBXcore_ClkRec) are not overridden by user firmware.
2. This reserved space includes the relocated USB_Init parameters using linker commands. See " Saving XDATA Space"

on page 26 for more details. This only applies to the Keil libraries.

AN169

28 Rev. 2.4

Internal Oscillator1 Enabled (OSCICN.7 = 1)

4x Clock Multiplier1 Enabled (Source: Internal Oscillator)

USB Clock Recovery1 Enabled (CLKREC = 0x8F)

USB Clock Source1 Clock multiplier (48 MHz)

USB Speed Full Speed (12 Mbps)

USB Transfer Type Bulk Transfer

Max data payload size
(Control Endpoint, EP0)

64 bytes per data packet

Number of bulk data
endpoints used

2 (EP2 in Split Mode) 2 (EP2 in Split Mode) 2 (EP1 and EP2)

Max data payload size
(Bulk data endpoints)

64 bytes per data packet

Double buffering Enabled for both IN and
OUT endpoints (FIFO can
hold two packets each at
any time).

Enabled for both IN and
OUT endpoints (FIFO can
hold two packets each at any
time).

Enabled for OUT endpoint
(FIFO can hold two packets
at any time). Disabled for IN
endpoint.

XDATA space reserved

by the library2

448 bytes XDATA (0x0640
to 0x07FF) [includes USB
FIFO space]

448 bytes XDATA (0x0640 to
0x07FF) [includes USB FIFO
space]

116 bytes (0x038C to
0x03FF) XDATA + 256 bytes

(0x0400 to 0x04FF) USB
FIFO

Starting address to
relocate USB_Init
function parameters
(see " Saving XDATA
Space" on page 26)

0x07AF 0x07AF 0x3EF

USBXpress Firmware
Library Name

USBX_F38X.LIB USBX_T620_1_320_3.LIB USBX_T622_3_T326_7.LIB

Table 1. Firmware Library Technical Details (Continued)

Notes:
1. The clock settings listed in this table are valid only if the default USBXpress clock functions (USB_Clock_Start and

USBXcore_ClkRec) are not overridden by user firmware.
2. This reserved space includes the relocated USB_Init parameters using linker commands. See " Saving XDATA Space"

on page 26 for more details. This only applies to the Keil libraries.

AN169

Rev. 2.4 29

Type Definitions from Firmware Library Header File USB_API.h
// UINT type definition
#ifndef _UINT_DEF_
#define _UINT_DEF_
typedef unsigned int UINT;
#endif /* _UINT_DEF_ */

// BYTE type definition
#ifndef _BYTE_DEF_
#define _BYTE_DEF_
typedef unsigned char BYTE;
#endif /* _BYTE_DEF_ */

AN169

30 Rev. 2.4

APPENDIX D—DEFINIT IONS FROM C++ HEADER FILE

SiUSBXP.H

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3, CP2101/2/2N/3/4/5/8/
9

/// API Status return codes
typedef enum _SI_STATUS {
 SI_SUCCESS = SILABS_STATUS_SUCCESS ///< @ref SILABS_STATUS no error
 , SI_INVALID_HANDLE = 0x01 ///< an handle parameter was not valid
 , SI_READ_ERROR = 0x02 ///< Read error
 , SI_RX_QUEUE_NOT_READY = 0x03 ///< Receive Queue NOT ready
 , SI_WRITE_ERROR = 0x04 ///< Write error
 , SI_RESET_ERROR = 0x05 ///< Reset error
 , SI_INVALID_PARAMETER = 0x06 ///< a parameter was not valid
 , SI_INVALID_REQUEST_LENGTH = 0x07 ///< Invalid Request Length
 , SI_DEVICE_IO_FAILED = 0x08 ///< device I/O failed
 , SI_INVALID_BAUDRATE = 0x09 ///< INvalid baudrate
 , SI_FUNCTION_NOT_SUPPORTED = 0x0A ///< the specified function is not sup-
ported
 , SI_GLOBAL_DATA_ERROR = 0x0B ///< global data error
 , SI_SYSTEM_ERROR_CODE = 0x0C ///< an unexpected, unrecoverable error

happened while interacting with the operating system>
 , SI_READ_TIMED_OUT = 0x0D ///< Read timed out
 , SI_WRITE_TIMED_OUT = 0x0E ///< Write timed out
 , SI_IO_PENDING = 0x0F ///< I/O pending
 , SI_NOTHING_TO_CANCEL = 0xA0 ///< Nothing to cancel
 , SI_DEVICE_NOT_FOUND = 0xFF ///< the specified device was not found
} SI_STATUS, *PSI_STATUS;

/// @defgroup SIGetProductStringFunctionFlags @ref GetProductString() function
flags
/// @{
#define SI_RETURN_SERIAL_NUMBER 0x00 ///< Serial Number string
#define SI_RETURN_DESCRIPTION 0x01 ///< Description string a la "Friendly
Name"
#define SI_RETURN_LINK_NAME 0x02 ///< link name string
#define SI_RETURN_VID 0x03 ///< VID string
#define SI_RETURN_PID 0x04 ///< PID string
/// @}

/// @defgroup SIRXQueueStatusFlags RX Queue status flags
/// @{
#define SI_RX_NO_OVERRUN 0x00 ///< Receive NO Overrun
#define SI_RX_EMPTY 0x00 ///< Receive Empty
#define SI_RX_OVERRUN 0x01 ///< Receive Overrun
#define SI_RX_READY 0x02 ///< Receive Ready
/// @}

/// @defgroup SIBufferSizeLimits Buffer size limits
/// @{
#define SI_MAX_DEVICE_STRLEN 256 //< Max Device String Length

AN169

Rev. 2.4 31

#define SI_MAX_READ_SIZE 4096*16 ///< Max Read Size
#define SI_MAX_WRITE_SIZE 4096 ///< Max Write Size
/// @}

// Type definitions
typedef char SI_DEVICE_STRING[SI_MAX_DEVICE_STRLEN];

/// @defgroup SIIOPinCharacteristics Input and Output pin Characteristics
/// @{
#define SI_HELD_INACTIVE 0x00 ///< Held INActive
#define SI_HELD_ACTIVE 0x01 ///< Held Active
#define SI_FIRMWARE_CONTROLLED 0x02 ///< Firware Controlled
#define SI_RECEIVE_FLOW_CONTROL 0x02 ///< Receive Flow Control
#define SI_TRANSMIT_ACTIVE_SIGNAL 0x03 ///< Transmit Active Signal
#define SI_STATUS_INPUT 0x00 ///< Status Input
#define SI_HANDSHAKE_LINE 0x01 ///< Handshake Line
/// @}

/// @defgroup SIMaskAndLatchDefs Mask and Latch value bit definitions
/// @{
#define SI_GPIO_0 (1<<0) ///< GPIO pin 0
#define SI_GPIO_1 (1<<1) ///< GPIO pin 1
#define SI_GPIO_2 (1<<2) ///< GPIO pin 2
#define SI_GPIO_3 0x0008 ///< GPIO pin 3
#define SI_GPIO_4 0x0010 ///< GPIO pin 4
#define SI_GPIO_5 0x0020 ///< GPIO pin 5
#define SI_GPIO_6 0x0040 ///< GPIO pin 6
#define SI_GPIO_7 0x0080 ///< GPIO pin 7
#define SI_GPIO_8 0x0100 ///< GPIO pin 8
#define SI_GPIO_9 0x0200 ///< GPIO pin 9
#define SI_GPIO_10 0x0400 ///< GPIO pin 10
#define SI_GPIO_11 0x0800 ///< GPIO pin 11
#define SI_GPIO_12 0x1000 ///< GPIO pin 12
#define SI_GPIO_13 0x2000 ///< GPIO pin 13
#define SI_GPIO_14 0x4000 ///< GPIO pin 14
#define SI_GPIO_15 0x8000 ///< GPIO pin 15
/// @}

/// @defgroup SIPartNums @ref SI_GetPartNumber() returned PartNums
///(deprecated, see @ref silabs_defs.SILABS_PARTNUM_CPXXXX)
/// @{
#define SI_CP2101_VERSION CP210x_PARTNUM_CP2101
#define SI_CP2102_VERSION CP210x_PARTNUM_CP2102
#define SI_CP2103_VERSION CP210x_PARTNUM_CP2103
#define SI_CP2104_VERSION CP210x_PARTNUM_CP2104
#define SI_CP2105_VERSION CP210x_PARTNUM_CP2105
#define SI_CP2108_VERSION CP210x_PARTNUM_CP2108
#define SI_CP2109_VERSION CP210x_PARTNUM_CP2109
#define SI_CP2102N_QFN28_VERSION CP210x_PARTNUM_CP2102N_QFN28
#define SI_CP2102N_QFN24_VERSION CP210x_PARTNUM_CP2102N_QFN24
#define SI_CP2102N_QFN20_VERSION CP210x_PARTNUM_CP2102N_QFN20
/// @}

AN169

32 Rev. 2.4

APPENDIX E—ERROR CODE EXPLANATIONS
AND DEBUGGING

Supported Devices: C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D,
C8051F380/1/2/3/4/5/6/7, C8051T320/1/2/3/6/7, C8051T620/1/2/3, CP2101/2/2N/3/4/5/8/
9

SI_SUCCESS

The function succeeded.

SI_DEVICE_NOT_FOUND

The device cannot be found on the system. Make sure the device is plugged in and powered. If the device is
plugged in, make sure that all previous application handles to the device have been closed (SI_Close). If a
previous instance of the application was not able to close its handle to the device before exiting, disconnect and
reconnect the device. To avoid having to temporarily remove the device in this case, you may have your application
store the current handle value (returned by SI_Open) in the Windows registry so that if the application crashes, the
handle is still accessible and can be closed (SI_Close).

SI_INVALID_HANDLE

The value of the Handle passed to the function is not valid. A valid handle is obtained by declaring a HANDLE
variable in your program and passing the address of that HANDLE to the SI_Open function. A Handle may become
invalid if the device is removed from the system, so first verify that the device is connected.

SI_WRITE_ERROR

The write operation failed. The device may have been removed.

SI_INVALID_PARAMETER

An invalid parameter was passed to the DLL function called. See the function definition for valid parameter types
and/or ranges.

SI_INVALID_REQUEST_LENGTH

See SI_Read and SI_Write function descriptions for valid request lengths.

SI_DEVICE_IO_FAILED

Device IO operation failed. The device may have been removed.

SI_INVALID_BAUDRATE

See the CP210x device-specific data sheet for supported baud rates.

SI_FUNCTION_NOT_SUPPORTED

The function called is not supported by the device. For example, attempting to use the SI_ReadLatch and
SI_WriteLatch functions on a device other than the CP2103 will cause the functions to return this value.

SI_GLOBAL_DATA_ERROR

An error has occurred such that the thread global data cannot be retrieved. Unload and reload the DLL if this return
code is received.

SI_SYSTEM_ERROR_CODE

Call GetLastError (Win32 Base) to retrieve Windows System Error Code. The error codes are defined on MSDN.

AN169

Rev. 2.4 33

SI_READ_TIMED_OUT or SI_WRITE_TIMED_OUT

The read or write request timed out based on the current timeout values.

SI_IO_PENDING

I/O is pending, wait on the OVERLAPPED object supplied to the SI_Read or SI_Write function using
WaitForSingleObject() or GetOverlappedResult() as documented on MSDN by Microsoft, and/or SI_CancelIo().

AN169

34 Rev. 2.4

APPENDIX F—UPDATING HOST CODE TO WORK UNDER
USBXPRESS 3.X.X

Note: The USBXpress 3.X.X package works different functionally from previous versions (2.42 and earlier). Do not
mix and match any of these old DLLs or Drivers with any part of the 3.X.X package. This will result in data error and
possibly a system crash.

The SI_Close() function has changed from SI_Close(&HANDLE Handle) to SI_Close(HANDLE Handle). Versions
before 3.X.X would set the HANDLE value to INVALID_HANDLE_VALUE when a close was called. Now it is the
responsibility of the developer to set the handle value to be invalid. For Visual Basic users, this change will also
require a Declare statement modification. The correct way to call this function in VB is:

Public Declare Function SI_Close Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long) As Integer

The Read and Write functions have changed to include a parameter for a pointer to an initialized OVERLAPPED
object. For C++ users the prototype has been set so that this parameter is false by default allowing older code to
be ported directly. For VB users the Declare statements will have to be updated as follows:

Public Declare Function SI_Read Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long, ByRef lpBuffer As Byte, _
ByVal dwBytesToRead As Long, ByRef lpdwBytesReturned As Long, _
ByVal lpOverlapped As Long) As Integer

Public Declare Function SI_Write Lib "SiUSBXp.DLL" _
(ByVal cyHandle As Long, ByRef lpBuffer As Byte, _
ByVal dwBytesToWrite As Long, ByRef lpdwBytesWritten As Long, _
ByVal lpOverlapped As Long) As Integer

AN169

Rev. 2.4 35

DOCUMENT CHANGE LIST

Revision 1.6 to Revision 1.7
 Updated all Host API information to reflect 3.X.X

changes. See "Appendix F—Updating Host Code to
Work Under USBXPRESS 3.X.X” for important
compatibility information.

 Device API documentation:
Updated description in "3. Device Interface Functions"

to reflect support for 'F326/7 and 'F34x devices.
Added description of function "3.10.

USB_Get_Library_Version".
Updated Table 1 to show details of the 'F326/7 and

'F34x device firmware libraries.

Revision 1.7 to Revision 1.8
 Modified return values for SI_Write.

 Modified descriptions of blocking in SI_Write/
SI_Read.

 Further explained the Block_Write in relation to
SI_Read.

Revision 1.8 to Revision 1.9
 Modified return values for SI_Read.

 Removed references to unused return code
SI_RX_QUEUE_NOT_READY

 Modified to explain SI_GetDLLVersion and
SI_GetDriverVersion

Revision 1.9 to Revision 2.0
 Updated functions return values in "3. Host API

Functions" on page 3.

 Corrected prototype declaration for "3.5. SI_Read"
on page 6 and "3.6. SI_Write" on page 7.

Revision 2.0 to Revision 2.1
 Added CP2104 and CP2105 to Relevant Devices on

Page 1.

 Updated Host API functions to reflect support for
CP2104 and CP2105 devices.

Revision 2.1 to Revision 2.2
 Added support for C8051F38x, C8051T32x, and

C8051T62x devices.

Revision 2.2 to Revision 2.3
 Added support for CP2108 and CP2109.

 Updated CancelIo() to SI_CancelIo() and added the
SI_CancelIo() API information.

 Added "2. USBXpress Versions" on page 2.

 Updated XDATA space reserved by the library for
C8051F326/7, C8051T622/3, and C8051T326/7 in

Table 1 on page 27.

 Updated Note 2 in Table 1 on page 27.

Revision 2.3 to Revision 2.4
 Corrected data type of bFlowXonXoff parameter in

SI_SetFlowControl().

 Replaced the USBXpress driver with Direct Access
driver.

 Added note to SI_GetDriverVersion().

 Added support for CP2102N.

 Updated Appendix D—Definitions from C++ header
file SiUSBXp.h.

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. Direct Access Versions
	3. Host API Functions
	3.1. SI_GetNumDevices
	3.2. SI_GetProductString
	3.3. SI_Open
	3.4. SI_Close
	3.5. SI_Read
	3.6. SI_Write
	3.7. SI_CancelIo
	3.8. SI_FlushBuffers
	3.9. SI_SetTimeouts
	3.10. SI_GetTimeouts
	3.11. SI_CheckRXQueue
	3.12. SI_SetBaudRate
	3.13. SI_SetBaudDivisor
	3.14. SI_SetLineControl
	3.15. SI_SetFlowControl
	3.16. SI_GetModem Status
	3.17. SI_SetBreak
	3.18. SI_ReadLatch
	3.19. SI_WriteLatch
	3.20. SI_GetPartNumber
	3.21. SI_DeviceIOControl
	3.22. SI_GetDLLVersion
	3.23. SI_GetDriverVersion

	4. Device Interface Functions
	4.1. USB_Clock_Start
	4.2. USB_Init
	4.3. Block_Write
	4.4. Block_Read
	4.5. Get_Interrupt_Source
	4.6. USB_Int_Enable
	4.7. USB_Int_Disable
	4.8. USB_Disable
	4.9. USB_Suspend
	4.10. USB_Get_Library_Version

	Appendix A—SFRs that Should Not be Modified After Calling USB_Clock_Start and USB_Init
	Appendix B—Format of User-Defined Product Description and Serial Number Strings
	Appendix C—Firmware Library Notes
	Appendix D—Definitions from C++ header file SiUSBXp.h
	Appendix E—Error Code Explanations and Debugging
	Appendix F—Updating Host Code to Work Under USBXPRESS 3.X.X
	Document Change List

