-’

SILICON LABS

UG162: Simplicity Commander Reference

Guide

This version of UG162 has been deprecated with the release
of Simplicity SDK Suite 2024.12.2. For the latest version, see
docs.silabs.com.

This document describes how and when to use the Command-
Line Interface (CLI) of Simplicity Commander. Simplicity
Commander supports all EFR32 Wireless SoCs, EFR32 Wireless
SoC modules (such as the MGM111 or MGM12P), EFM32 MCU
families, EM3xx Wireless SOCs, and SiWx91x family devices.
EFM8 MCU families are not supported at this time.

This document is intended for software engineers, hardware engineers, and release
engineers. Silicon Labs recommends that you review this document to familiarize your-
self with the CLI commands and their intended uses. You can refer to specific sections
of this document to access operational information as needed. This document also in-
cludes examples so you can gain an understanding of Simplicity Commander in action.

This document is up-to-date with Simplicity Commander version 1.16. See section
7. Software Revision History for a list of new and modified commands for the current
and previous versions of the application.

silabs.com | Building a more connected world. Copyright © 2025 by Silicon Laboratories

KEY POINTS

Introduces Simplicity Commander.

Adds new features and commands.

Describes the file formats supported by
Simplicity Commander.

Includes detailed syntax of all Simplicity
Commander commands and example
command line inputs and outputs.

https://docs.silabs.com/simplicity-commander/latest/simplicity-commander-start/

Table of Contents

1. Introduction.

2. File Format Overview
2.1 Motorola S-record (s37) File Format .
2.2 Update Image File Formats. .9
2.3 Intel HEX-32 File Format .10

© ©O© o

3. General Information. L 00000 s
3.1 Installing Simplicity Commander .M
3.2 Command Line Syntax 0.0

3.3 General Options L. L. s 2
3.3.1 Help(--help).12
3.3.2 Version (--version) 04
3.3.3 Device (--device <device name>) . 14
3.3.4 J-Link Connection Options .5
3.3.5 Debug Interface Configuraton .16
3.3.6 Graphical User Interface .6
3.3.7 Timestamp (--timestamp)o

3.4 Outputand ExitStatus o o o ... 000 AaAr

4. EFR32 CustomTokens. .. 18
4.1 Introduction .. a8
4.2 Custom Token Groups .8
4.3 Creating Custom Token Groups .8
4.4 DefiningTokens 09
45 Memory Regions ... 9
4.6 Token File Format Description. .20
4.7 Using Custom TokenFiles .. .20
4.8 Using Custom Token Files in Any Location .20

5. Security Overview A
5.1 Security Store L . L L L L L L2
5.2 Access Certificate o 0021
5.3 Challenge and Command Signing .22

6. Simplicity CommanderCommands .23

6.1 Device Flashing Commands .23
6.1.1 FlashlmageFile24
6.1.2 Flash Using IP Address without VerificatonandReset24
6.1.3 Flash Several Files .25
6.1.4 PatchFlash .26
6.1.5 Patch Using InputFile ..27
6.1.6 FlashTokens28

silabs.com | Building a more connected world. Rev.3.1| 2

6.2 Flash Verification Command ..29

6.3 Memory Read Commands ...29
6.3.1 PrintFlashContents. .30
6.3.2 Dump Flash ContentstoFile. .30

6.4 TokenCommands.o o3t
6.4.1 PrintTokens s 3
6.4.2 Dump TokenstoFile .03
6.4.3 Dump Tokens from Image File N 24
6.4.4 Generate C Header Files from Token Groups T Y24

6.5 Convert and Modify File Commands. .32
6.5.1 Combine TwoFiles .33
6.5.2 Define SpecificBytes .33
6.5.3 Define Tokens. ... 34
6.5.4 Dump File Contents. . . . e 7
6.5.5 Signing an Application for Secure Boot Co35
6.5.6 Signing an Application for Secure Boot using a Hardware Securlty Module Coe . . .35
6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware

Security Module . . . R 16
6.5.8 Adding a CRC32 for Gecko Bootloader Coe36
6.5.9 Signing an Application for Secure Boot using an Intermedrary Certlflcate e ¥
6.5.10 Add a Trust Zone DecryptionKey. .38
6.5.11 Extract Sections from ELF Files .38

6.6 EBLCommands 039
6.6.1 Print EBL Information .. .39
6.6.2 EBL Key Generaton .. .3
6.6.3 EBL File Creation .40
6.6.4 EBL File Parsing . . . < 10)
6.6.5 Memory Usage Informatlon from AAT .

6.7 GBLCommandso s
6.7.1 GBL File Creation . . . e ¥
6.7.2 GBL File Creation with Compressron Y 7
6.7.3 Create a GBL File for Bootloader Upgrade 42
6.7.4 Creating a GBL File for Secure Element Upgrade. 43
6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Appllcatlon S . .43
6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Securlty

Module . . . e v

6.7.7 Creating a Slgned GBL F|Ie Usmg a Hardware Securlty Module e e A5
6.7.8 GBLFileParsing. A5
6.7.9 GBL Key Generaton . A5
6.7.10 Generating a SigningKey . . . e - 15)
6.7.11 Generate a Signing Key Using a Hardware Secunty Module 46
6.7.12 Creating a Signed GBL File Using a Hardware Security Module46
6.7.13 Create a GBL File from an ELF File46
6.7.14 Create an Encrypted GBL File with an Unencrypted Secure EIement Upgrade F|Ie B ¥ 4
6.7.15 Create a GBL File with Version Dependencies48
6.7.16 CreateaDeltaGBLFile . 49
6.8 Kit Utility Commands .50

silabs.com | Building a more connected world. Rev.3.1| 3

6.8.1 FirmwareUpgrade ...50

6.8.2 Kit Information Probe .. 5
6.8.3 AdapterResetCommand . b2
6.8.4 Adapter Debug Mode Command . B2
6.8.5 List Adapter IP Configuration Command .B2
6.8.6 Adapter DHCP Command. .53
6.8.7 Set Static IP Configuration Command .53
6.8.8 Get or Change Adapter Nickname .53
6.8.9 Getor Change TargetVoltage . 54
6.8.10 Get or Change TargetPower .b4
6.9 Device Erase Commands .b5
6.9.1 EraseChip. .. .5
6.9.2 Erase Region . . . o 1<)
6.9.3 Erase Pages in Address Range Y+ 1+
6.10 Device Lock and Protection Commands .56
6.10.1 Debuglock .56
6.10.2 Debug Unlock . . . e e e b6
6.10.3 Write Protect Flash Ranges e Y4
6.10.4 Write Protect Flash Region .57
6.10.5 Disable Write Protection. .57
6.11 Device Utility Commands .57
6.11.1 Device Information Command .b8
6.11.2 Device Reset Command. .b8
6.11.3 Device Recovery Command . . e e e o.....o. . .b8
6.11.4 Device Z-Wave QR Code Command o 1°)
6.12 External SPI Flash Commands .59
6.12.1 Erase External SPI Flash Command .59
6.12.2 Read External SPI Flash Coomand .60
6.12.3 Write External SPI Flash Command .60
6.13 Advanced Energy Monitor Commands .60
6.13.1 Measure Average Currentin a Time Window61
6.13.2 Log Current Measurements as Time SeriesData61
6.13.3 Start Logging on TriggerEvent. .62
6.13.4 Calibrate the Advanced Energy Monitor.63
6.14 Serial Wire Output Read Commands .63
6.14.1 Configure SWOSpeed .63
6.14.2 Read SWO Until Timeout . . e o
6.14.3 Read SWO Until a Marker Is Found Y o
6.14.4 Dump Hex Encoded SWO Output. .04
6.15 NVM3 Commands . . . P 1+
6.15.1 Read NVM3 Data From a DeV|ce e 14
6.15.2 Parse NVM3 Data . . . N 9]
6.15.3 Initialize NVM3 Area in a F|Ie N 9]
6.15.4 Write NVM3 Data Usinga TextFile .67
6.15.5 Write NVM3 Data Using CLI Options. .68
6.16 CTUNECommands. .c8

silabs.com | Building a more connected world. Rev.3.1| 4

6.16.1 CTUNE Get Command
6.16.2 CTUNE Set Command
6.16.3 CTUNE Autoset Command .

6.17 Security Commands.
6.17.1 Get Device Status .
6.17.2 Generate Key Pair . .
6.17.3 Write Public Key to Device .
6.17.4 Read Public Key from Device .
6.17.5 Configure Lock Options .
6.17.6 Lock Debug Access
6.17.7 Secure Debug Unlock.
6.17.8 Disable Tamper.
6.17.9 Device Erase using Secure Element
6.17.10 Disable Device Erase
6.17.11 Roll Challenge. .
6.17.12 Generate Example Authorlzatlon F|Ie .
6.17.13 Generate Access Certificate .
6.17.14 Generate Unsigned Command File .
6.17.15 Generate Example Configuration File .
6.17.16 Write User Configuration
6.17.17 Read User Configuration
6.17.18 Get Security Store Path.
6.17.19 Write AES Decryption Key .
6.17.20 Read Device Certificates
6.17.21 Vault Device Attestation

6.18 Util Commands
6.18.1 Key Generation .
6.18.2 Generating a Signing Key
6.18.3 Key to Token. .
6.18.4 Key Config Generation
6.18.5 Generate Certificate
6.18.6 Sign Certificate .
6.18.7 Verify Signature
6.18.8 Application Information

6.18.9 Print Section Header Information from an ELF F|Ie .
6.18.10 Get RAM and Flash Usage of an ELF Application .

6.18.11 Print Header Information of an RPS File .

6.19 OTA Commands .
6.19.1 Create an OTA Bootloader F|Ie
6.19.2 Create a Null OTA File
6.19.3 Print OTA File Information
6.19.4 Sign an OTA File .
6.19.5 Create an OTA File for External Slgnlng
6.19.6 Externally Sign an OTA File.
6.19.7 Verify Signature of an OTA File
6.19.8 Create an OTA Matter File
6.19.9 Parse a Matter OTA File .

silabs.com | Building a more connected world.

.69
.69
.69

.69
.70
71
72
72
73
73
.74
.78
.79
.79
.80
.81
.83
.84
.85
.87
.88
.89
.89
.90
91

.92
.92
.92
.92
.93
.94
.94
.95
.95
.96
.97
.98

.99
.99

. .99
100
101

. 101
. 102
. 102
. .103
. 104

Rev.3.1| 5

6.20 Post-Build Command . . . [0

6.20.1 Execute a Project Post- Bund F|Ie N [0]9)
6.21 RPS Commands e e
6.21.1 Create an RPS File From a Blnary Image e L0}
6.21.2 Create an RPS File From an ELF Image e L0 |
6.21.3 Create an RPS File from a Hex/s37 Image.10
6.21.4 Create an RPS File For Upgrading On-DeviceKey10
6.21.5 Create a Secure RPS Application Image T
6.21.6 Convert an Existing RPS Application Image .o o e 1
6.21.7 Combine Multiple RPS Images Into a Single RPS F|Ie e K
6.21.8 Create an RPS File for External Signing N
6.21.9 Externally Signan RPSFile. .14
6.21.10 Load RPS Image Onto Device I
6.22 VUART Commands . . . e
6.22.1 VUART Communications Unt|I Tlmeout .o e)
6.22.2 VUART Communications Until a Marker is Found e I K
6.23 RTT Commands . . . e
6.23.1 RTT Communications Unt|I a Marker is Found e (&
6.23.2 RTT Communications Until Timeout .116
6.23.3 RTT Communications Over Virtual Terminals . . . e
6.23.4 RTT Communications With a Custom RTT Buffer Conﬂguratlon e 4
6.24 Serial Commands . e A k<
6.24.1 Load an RPS Appllcatlon Over Serlal e A £
6.24.2 Lock Debug Access to M4/NWP Core . . e e
6.24.3 Unlock Debug Access to M4/NWP Core With EX|st|ng Token Coe o120
6.24.4 Unlock Debug Access to M4/NWP Core Without Existing Token e 2{0
6.24.5 Extract Device Part Number e
6.25 Manufacturing Commands Y 2
6.25.1 List Available Memory Regions e s
6.25.2 Read Memory Region Data From Device23
6.25.3 Read Specific Fields From Memory Region 2
6.25.4 Read Address Range From Device 124
6.25.5 Write Memory Region Data to Device e A
6.25.6 Write Data to Address. . . . e 1
6.25.7 Erase Memory Region Data From DeV|ce e ()
6.25.8 Erase Address Range From Device 127
6.25.9 Dump Configuration Data of Device .128
6.25.10 Initialize PUF And Generate Activation Code e poas
6.25.11 Provision Security Keys to the Device130
6.25.12 Provision OTP Security Keys to the Device13
6.25.13 List Available Device Profiles .1HA
6.25.14 Provision Device Profile to the Device132
6.25.15 Protect Device Configuration . . . N X
6.25.16 Get Information About Device Conflguratlon e e 7
6.26 VCOM Commands . . . e K 7
6.26.1 Configure Adapter VCOM Settlngs s <14
6.26.2 VCOM Communications .135

silabs.com | Building a more connected world. Rev.3.1| 6

6.27 Completion Commands O B 163
6.27.1 Generate Completion Script. .136
6.27.2 Install Completion Script .137

6.28 LittleFS Commands L L.o....oo137
6.28.1 Initialize an Empty LittleFS Instance .137
6.28.2 Get Information About a LittleFS Instance138
6.28.3 Dump a LittleFS Instance From Device138
6.28.4 List Contents in a LittleFS Instance 139
6.28.5 Add Files to a LittleFS Instance e KL
6.28.6 Remove Files From a LittleFS Instance140
6.28.7 Extract Files From a LittleFS Instance A4

7. Software Revision History e [¥4

71 Version1.17o oo s 142

7.2 Version1.16 L. ... 144

7.3 Version1.15.00 144

7.4 Version1.14 L. 148

7.5 Version113. .. .1

76 Version1.12.16

7.7 Version1.11o L o s 14y

7.8 Version1.10 L . Lo e s s 14y

7.9 Version1.9 L L oL L L Lo s e ay

710 Version1.8. .48

711 Version1.748

712 Version1.5. L.48

713 Version1.4 .48

714 Version1.3.48

715 Version1.2.48

716 Version1.1. .48

717 Version1.0.148

7.18 Version 0.25 e e

7.19 Version 0.24 e i ke |

7.20 Version 0.22 N i ke

7.21 Version 0.21 e 21

7.22 Version 0.16 N i ke

7.23 Version 0.15 N koo

7.24 Version 0.14 T o1

7.25 Version 0.13 N kel

7.26 Version 0.12 e Koo

7.27 Version 0.11 e Ko 10

silabs.com | Building a more connected world. Rev.3.1| 7

UG162: Simplicity Commander Reference Guide
Introduction

1. Introduction

Simplicity Commander is a single, all-purpose tool to be used in a production environment. It is invoked using a simple Command Line
Interface (CLI) that is also scriptable. Simplicity Commander enables customers to complete these essential tasks:

* Flash their own applications.

» Configure their own applications.

» Create binaries for production.

» Communicate with the target device

Simplicity Commander is designed to support the Silicon Labs Wireless STK and STK platforms.

The primary intended audience for this document is software engineers, hardware engineers, and release engineers who are familiar
with programming EFM32, EFR32, EM3xx, and SiWx91x devices. This reference guide describes how to use the Simplicity Command-
er CLI. It provides general information on file formats supported by Simplicity Commander and the Silicon Labs bootloaders, and in-
cludes details on using the Simplicity Commander commands, options, and arguments. It also includes example command line inputs
and outputs so you can gain a better understanding of how to use Simplicity Commander effectively.

silabs.com | Building a more connected world.

UG162: Simplicity Commander Reference Guide
File Format Overview

2. File Format Overview

Simplicity Commander works with different file formats: .bin, .s37, .ebl, .gbl, and .hex. Each file format serves a slightly different pur-
pose. The file formats supported by Simplicity Commander are summarized below.

2.1 Motorola S-record (s37) File Format

Silicon Labs uses the Simplicity Studio as its Integrated Development Environment (IDE) and leverages the IAR Embedded Workbench
for ARM platforms. This tool combination produces Motorola S-record files, s37 specifically, as its output. (For more information on Mo-
torola S-record file format, see http://en.wikipedia.org/wiki/S_record.) In Silicon Labs development, an s37 file contains programming
data about the built firmware and generally only represents a single piece of firmware—application firmware or bootloader firmware—
but not both. An application image in s37 format can be loaded into a supported target device using the Simplicity Commander flash
command. The s37 format can represent any combination of any byte of flash in the device. The Simplicity Commander convert com-
mand can also be used to read multiple s37 files and hex files; output an s37 file for combining multiple files into a single file; and
modify individual bytes of a file.

2.2 Update Image File Formats

An update image file provides an efficient and fault-tolerant image format for use with Silicon Labs bootloaders to update an application
without the need for special programming devices. Two image formats are supported: Gecko Bootloader (GBL) format for use with the
Silicon Labs Gecko Bootloader introduced for use with EFR32 devices and Ember Bootloader (EBL) format for use with legacy Ember
bootloaders. See UG103.6: Application Development Fundamentals: Bootloading for more details about these image file formats and
bootloader use with different platforms.

Update image files are generated by the Simplicity Commander gbl create or ebl create command. These formats can only repre-
sent firmware images; they cannot be used to capture Simulated EEPROM token data (as described by AN703: Using Simulated EE-
PROM Version 1 and Version 2 for the EM35x and EFR32 Series 1 SoC Platforms). GBL upgrade files may contain data that gets
flashed outside the main flash.

Bootloaders can receive an update image file either over-the-air (OTA) or via a supported peripheral interface, such as a serial port,
and reprogram the flash in place. Update image files are generally used in later stage development and for upgrading manufactured
devices in the field.

During development, bootloaders should be loaded onto the device using the .s37 or .hex file format. If the Gecko Bootloader with sup-
port for in-field bootloader upgrades is used, it is possible to perform a bootloader upgrade using a GBL update image. For other boot-
loaders or file formats, do not attempt to load a bootloader image onto the device as an update image.

silabs.com | Building a more connected world.

http://en.wikipedia.org/wiki/S_record

UG162: Simplicity Commander Reference Guide
File Format Overview

2.3 Intel HEX-32 File Format

Production programming uses the standard Intel HEX-32 file format. The normal development process for EFR32 chips involves creat-
ing and programming images using the s37 and ebl file formats. The s37 and ebl files are intended to hold applications, bootloaders,
manufacturing data, and other information to be programmed during development. The s37 and ebl files, though, are not intended to
hold a single image for an entire chip. For example, it is often the case that there is an s37 file for the bootloader, an s37 file for the
application, and an s37 file for manufacturing data. Because production programming is primarily about installing a single, complete
image with all the necessary code and information, the file format used is Intel HEX-32 format. While s37 and hex files are functionally
the same—they simply define addresses and the data to be placed at those addresses—Silicon Labs has adopted the conceptual dis-
tinction that a single hex file contains a single, complete image often derived from multiple s37 files. You can use the Simplicity
Commander convert command to read multiple hex files and s37 files; output a hex file for combining multiple files into a single file;
and modify individual bytes of a file.

Note: Simplicity Commander is capable of working identically with s37 and hex files. All functionality that can be performed with s37
files can be performed with hex files. Ultimately, with respect to production programming, Simplicity Commander flash command al-
lows the developer to load a variety of sources onto a physical chip. The convert command can be used to merge a variety of sources
into a final image file and modify individual bytes in that image if necessary.

The following table summarizes the inputs and outputs for the different file formats used by Simplicity Commander.

Table 2.1. File Format Summary

Outputs
hex bin chip
flash X X X X

readmem X

convert
ebl create X X X X
ebl parse X X X X
rps create X X X X

mfg917 X X X X X X

silabs.com | Building a more connected world. Rev. 3.1 | 10

UG162: Simplicity Commander Reference Guide
General Information

3. General Information

3.1 Installing Simplicity Commander

You can install Simplicity Commander using Simplicity Studio or by downloading one of the following standalone versions and then
completing the installation:

https://www.silabs.com/documents/public/software/SimplicityCommander-Linux.zip
https://www.silabs.com/documents/public/software/SimplicityCommander-Mac.zip

https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip

3.2 Command Line Syntax

To execute Simplicity Commander commands, start a Windows command window, and change to the Simplicity Commander directory.
The general command line structure in Simplicity Commander looks like this:

commander [command] [options] [arguments]

where:
» commander is the name of the tool.

» command is one of the commands supported by Simplicity Commander, such as, flash, readmem, convert, etc. The command-spe-
cific help provides additional information on each command.

+ option is a keyword that modifies the operation of the command. Options are preceded with -- (double dash) as described for each
command. Some commands have single-character short versions which are preceded by - (single dash). Refer to the command-
specific help for the single-dash shorthands.

* argument is an item of information provided to Simplicity Commander when it is started. An argument is commonly used when the
command takes one or more input files.

» square brackets indicate optional parameters as in this example: commander flash [filename(s)] [options]
» angle brackets indicate required parameters as in this example: commander readmem --output <filename>

silabs.com | Building a more connected world. Rev. 3.1 | 11

https://www.silabs.com/documents/public/software/SimplicityCommander-Linux.zip
https://www.silabs.com/documents/public/software/SimplicityCommander-Mac.zip
https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip

UG162: Simplicity Commander Reference Guide
General Information

3.3 General Options

3.3.1 Help (- - hel p)
Displays help for all Simplicity Commander commands and command-specific help for each command.

Command Line Syntax

$ commander --help

Command Line Usage Output

Simplicity Commander help displays a list of all Simplicity Commander commands. The following figure is an example.

Command Prompt

SiliconlLabs\Simplicity Commander>commander --help
: commander [command] [options]

Simplicity Commander

Run 'commande

Options:

c output file.
d
ebl g c C for EBL files.
extflash
f sh
g for GBL files.

ommands .
and dump tokens frc device or an image file.
f token gro

Figure 3.1. Simplicity Commander Help

To display help on a specific Simplicity Commander command, enter the name of the command followed by --help.

Command Line Input Example

$commander flash --help

Command Line Output Example

Simplicity Commander displays help for the flash command in the following figure.

silabs.com | Building a more connected world. Rev. 3.1 | 12

UG162: Simplicity Commander Reference Guide
General Information

EX Command Prompt

to flash.

Figure 3.2. Simplicity Commander Flash Command Help

silabs.com | Building a more connected world. Rev.3.1 | 13

UG162: Simplicity Commander Reference Guide
General Information

3.3.2 Version (- - ver si on)

Displays the version information for Simplicity Commander, J-Link DLL, and EMDLL, and a list of detected USB devices. If you use this
option in conjunction with another command or command/option, Simplicity Commander displays this extra information before any com-
mand is executed.

Command Line Syntax

$ commander --version

Command Line Usage Output

Simplicity Commander displays version information. The following figure is an example.
C:\SiliconlLabs\Simplicity Commander>commander --version

Simplicity Commander 1vép8b299

¢ DLL w

EMDLL ©
mbed T

Figure 3.3. Simplicity Commander Version Information

3.3.3 Device (--devi ce <device nane>)

Specifies a target device for the command. If this option is supplied, no auto-detection of the target device is used. In some cases, such
as when using convert with the --token option, this option is required.

For convenience, Simplicity Commander attempts to parse the --device option so that a complete part number is normally not re-
quired as a command input. For example, Simplicity Commander interprets commander --device EFR32 to mean that the selected
device is an EFR32, which has implications regarding the memory layout and available features of this specific device. As another ex-
ample, Simplicity Commander interprets —--device EFR32F256 as an EFR32 with 256 kB flash memory.

Using a complete part number such as --device EFR32MG1P233F256GM48 is always supported and recommended.

Command Line Syntax

$ commander <command> --device <device name>

Command Line Input Example

$ commander device info --device Cortex M3

silabs.com | Building a more connected world. Rev.3.1 | 14

UG162: Simplicity Commander Reference Guide
General Information

3.3.4 J-Link Connection Options

Use the following options to select a J-Link device to connect to and use for any operation that requires a connection to a kit or debug-
ger. You can connect over IP (using the --ip option), over USB (using the --serialno option), or you can provide the serial port name
or device file (using the --identifybyserialport option) as shown in the following examples. You can use only one of these options
at a time. If no option is provided, Simplicity Commander attempts a connection to the only USB connected J-Link adapter.

Note: Providing the --identifybyserialport option only lets Simplicity Commander use the serial port name to identify the corre-
sponding J-Link device; Simplicity Commander will still connect to the J-Link device over USB (similarly to when you provide the --
serialno option).

Command Line Syntax

$ commander <command> --serialno <J-Link serial number>

Command Line Input Example

$ commander adapter probe --serialno 440050184

Command Line Syntax

$ commander <command> --ip <IP address>

Command Line Input Example

$ commander adapter probe --ip 10.7.1.27

Command Line Syntax

$ commander <command> --identifybyserialport <serial port name>

Command Line Input Example

$ commander adapter probe --identifybyserialport /dev/ttyUSB1

silabs.com | Building a more connected world. Rev. 3.1 | 15

UG162: Simplicity Commander Reference Guide
General Information

3.3.5 Debug Interface Configuration

Use the --tif and --speed options to configure the target interface and clock speed when connecting the debugger to the target de-
vice.

Simplicity Commander supports using Serial Wire Debug (SWD) or Joint Test Action Group (JTAG) as the target interface. All currently
supported Silicon Labs hardware works with SWD, while some can also be used with JTAG. Custom hardware may require JTAG to be
used.

The maximum clock speed available typically depends on the debug adapter, the target device, and the physical connection between
the two. Silicon Labs kits typically support speeds up to 1000 — 8000 kHz, depending on the kit model. If the selected clock speed is
higher than what the adapter supports, the clock speed will fall back to using the highest speed it does support. You may want to select
a lower clock speed if the debug connection is unstable or not working at all when working with custom hardware with longer debug
cables or when the electrical connections are less than ideal.

If the --tif and --speed options are not used, the default configuration is SWD and 4000 kHz.

Command Line Syntax

$ commander <command> [--tif <target interface>] [--speed <speed in kHz>]

Command Line Input Example

$ commander device info --tif SWD --speed 1000

Command Line Output Example

Setting debug interface speed to 1000 kHz
Setting debug interface to SWD

Part Number : EFR32BG1P332F256GJ43
Die Revision o A2

Production Ver - 138

Flash Size : 256 kB

SRAM Size : 32 kB

Unique ID . 000b57fffe0934e3

DONE

3.3.6 Graphical User Interface

Displays a Graphical User Interface (GUI) for laboratory use of Simplicity Commander. The GUI can be used in the lab for such typical
tasks as:

» Flashing device images
» Upgrading Silicon Labs kit firmware and configuration
+ Setting device lock features
* Accessing the kit's Admin console
» Communicating with the target device via multiple protocols, including:
* SEGGER Real Time Transfer (RTT)
 Serial Wire Output (SWO)
* Virtual UART (VUART)
* Virtual COM (VCOM)

Command Line Syntax

$ commander

silabs.com | Building a more connected world. Rev. 3.1 | 16

UG162: Simplicity Commander Reference Guide
General Information

3.3.7 Timestamp (- - ti mest anp)
Add a timestamp to the Simplicity Commander output.

Command Line Syntax

$ commander <command> --timestamp
Command Line Usage Output

Display a timestamp to all output from Simplicity Commander.

Command Line Input Example

$commander device reset --timestamp

Command Line Output Example

Simplicity Commander displays the timestamp for the device reset command.

17:00:39.194 Resetting chip.-..
DONE

3.4 Output and Exit Status

The exit status of Simplicity Commander can take on a few different values. Whenever an operation completed successfully, Simplicity
Commander's exit status is 0 (zero). Any error will cause the exit status to be non-zero.

Simplicity Commander defines the following exit status codes.

Exit Status | Description

0 No error occured
-1 Input error. For example, this could be a missing command line option, non-existent command, or an invalid filename.
-2 Run time error. Used whenever anything goes wrong when executing the command. Examples include not being able to

connect to a debug adapter or flash verification failed.

Note: Some operations systems present the exit status as an unsigned integer. On these systems, -1 will be interpreted as 255, -2 as
254, and so on.

The operating system itself may create other exit codes if the application crashes. These will always be non-zero and are out of the
control of Simplicity Commander.

All errors and potential error conditions are indicated in Simplicity Commander's output in addition to the exit status. All errors are dis-
played with the prefix "ERROR:". All warnings are displayed with the prefix "WARNING:".

Any output from Simplicity Commander will always end with "DONE". This does not indicate that the operation was successful, merely
that execution has finished.

Example of an error in Windows follows.

C:\>commander device info -s 440000000

ERROR: Unable to connect with device with given serial number
ERROR: Could not open J-Link connection.

DONE

C:\>echo %errorlevel%
-2

silabs.com | Building a more connected world. Rev. 3.1 | 17

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4. EFR32 Custom Tokens

4.1 Introduction

Simplicity Commander supports defining custom token groups for reading and writing. Custom tokens work just like manufacturing to-
kens, but the definition and location of the tokens is configurable to suit different requirements.

There are two different ways for Simplicity Commander to find and use custom token definition files. For Simplicity Commander to treat
the custom token file in the same way as a regular token group, the file must be placed in a specific location as described in section
4.2 Custom Token Groups.

The other option is to use the --tokendefs command line option instead of the --tokengroup option. With this method, Simplicity
Commander uses a token definition file in an arbitrary location, for example, under revision control. For more information, see section
4.8 Using Custom Token Files in Any Location.

4.2 Custom Token Groups

For Simplicity Commander to treat custom token files like regular token groups, the file must be placed in a specific tokens folder and
the filename must follow a special syntax.

The location and initialization of the tokens folder depends on the operating system used.
On Windows and Linux, the tokens folder is included in the zip file and is placed alongside the executable in the installation directory.

On Mac OS X, the folder named ~/Library/SimplicityCommander/tokens/ is generated automatically in the user's home directory
when running

commander on the command line for the first time. Running commander --help, for example, is enough to ensure that the folder with
files is created. Inside this tokens folder, there is a file named tokens-example-efr32.json. This file provides an example of the to-
ken types and locations currently supported by Simplicity Commander.

The syntax of the filename is tokens-<group name>-<architecture>.json. <group name> is the name of the custom token group
and can be any string. <architecture> is a string describing which devices the token definitions apply to. The following table lists the
supported architecture strings.

Architecture | Devices

efr32 All Series 1 EFR32 devices

efr32xg2 All Series 2 EFR32 devices

em3xx All EM3xx devices
efm32 All EFM32 devices (Series 0 and 1)
ezr32 All EZR32 devices

For example, to define the token group myapp for EFR32 Series 1 devices, the filename would be tokens-myapp-efr32. json.

4.3 Creating Custom Token Groups

To define a custom token group, copy tokens-example-efr32_json to a new file in the same directory using the following naming
convention: tokens-<groupname>-efr32.json

For example: tokens-myapp-efr32. json

To verify that Simplicity Commander sees the new file, run

$ commander tokendump --help

The name of your token group (for example, "myapp") should be listed as a supported token group like this:

--tokengroup <tokengroup> which set of tokens to use. Supported: myapp, znet

silabs.com | Building a more connected world. Rev. 3.1 | 18

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4.4 Defining Tokens

Each token in the JSON file has the following properties.

Property Description
name The name of the token, which is used as an identifier when dumping or writing tokens.
page The named memory region to use for the token. For more information, see section 4.5 Memory Regions.
sizeB The size of the token in bytes.
» A token of size 1 is interpreted as an unsigned 8-bit integer.
» A token of size 2 is interpreted as an unsigned 16-bit integer.
» Atoken of size 4 is interpreted as an unsigned 32-bit integer.
* Any other size is interpreted as a byte array of the given size.
string Optional boolean. If this property is true, the token is interpreted as a zero terminated ASCII string instead of a byte
array. The maximum string length is sizeB - 1 because one byte is reserved for the zero terminator.

4.5 Memory Regions
The following values are valid data in the "page" option:
USERDATA

The user data page is a separate flash page intended for persistent data and configuration. The user data page is not erased when
disabling debug lock. It can, however, be erased by a specific page erase.

The user data page is located at address OxOFE000OQOQ. It is 2 kB on Series 1 EFR32 devices and 1 kB on Series 2 EFR32 devices.
LOCKBITSDATA

On Series 1 EFR32 devices, the lock bits page is used by the chip itself to configure flash write locks, debug lock, AAP lock, and so on.
However, the last 1.5 kB of this page is unused by the device itself and has the important property that it is erased when disabling
debug lock. A regular mass erase by the MSC—typically by executing the commander device masserase or commander flash --
masserase command—does not erase the lock bits page.

The lock bits page is located at address OXOFE04000 with size 2 kB on Series 1 EFR32 devices. Tokens in this page must use an offset
of at least 0x200 on these devices; otherwise, collisions with chip functionality can occur.

On Series 2 EFR32 devices, there is no physical lock bits page. Instead, the LOCKBITSPAGE region is defined to be the first 2 kB of
the last flash page in the main flash block. This maintains backwards compatibility, while still ensuring that any data in this region is
erased when the device is erased during debug unlock.

silabs.com | Building a more connected world. Rev. 3.1 | 19

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4.6 Token File Format Description

A token file declares what values are programmed for manufacturing tokens on the chip. Lines are composed of one of the following
forms:

<token-name> : <data>

<token-name> : IERASE!

Follow these guidelines when using a token file:

» Omitted tokens are left untouched and not programmed on the chip.

» Token names are case insensitive.

» All integer values are interpreted as hexadecimal numbers in BIG-endian format and must be prefixed with '0x'.
» Blank lines and lines beginning with # (hashtag) are ignored.

» Byte arrays are given in hexadecimal format without a leading '0x'".

» Specifying IERASE! for the data sets that token to all OxFF.

» The token data can be in one of three main forms: byte-array, integer, or string.
» Byte arrays are a series of hexadecimal numbers of the required length.

* Integers are BIG-endian hexadecimal numbers that must be prefixed with '0x'.
» String data is a quoted set of ASCII characters.

4.7 Using Custom Token Files

Refer to 4.1 Introduction for a definition of custom token files and where they should be located for Simplicity Commander to find them
automatically. To use a custom token file located in the tokens folder, run Simplicity Commander with a --tokengroup option corre-
sponding to the name of the JSON file. For example, if the file was named tokens-myapp-efr32. json, use this option:

--tokengroup myapp

To create a text file useful as input to the flash or convert commands, the easiest way is to start by dumping the current data from a
device.

For example:

$ commander tokendump -s 440050148 --tokengroup myapp --outfile mytokens.txt

mytokens.txt can then modified to have the desired content, and then used when flashing devices or creating images in this way:

$ commander flash -s 440050148 --tokengroup myapp --tokenfile mytokens.txt

To be able to read the custom token data from an application, Simplicity Commander provides the tokenheader command, which gen-
erates a C header file that can be included in an application. See section 6.4.4 Generate C Header Files from Token Groups for details.
4.8 Using Custom Token Files in Any Location

In some cases, it is more convenient to have the custom token defintions file somewhere in the file system (for example, if it is placed
under revision control). Simplicity Commander supports this functionality with the --tokendefs option which refers to a JSON file any-
where in the file system. Use it instead of the --tokengroup option.

For example:

$ commander tokendump --tokendefs my_tokens.json --outfile mytokens.txt
$ commander flash --tokendefs my_tokens.json --tokenfile mytokens.txt

silabs.com | Building a more connected world. Rev. 3.1 | 20

UG162: Simplicity Commander Reference Guide
Security Overview

5. Security Overview

This chapter describes essential security features in Simplicity Commander.

5.1 Security Store

Security Store is the location where all files generated and used by the security commands in Simplicity Commander are stored. You
can find the path to Security Store with the commander security getpath command. Unless the --nostore option is used with securi-
ty commands, Simplicity Commander will store all keys, certificates, and configuration files seen in Security Store. Descriptions of the
files appear below.

» access_certificate.bin — certificate delegating permission to unlock debug access of a device.

« archive folder — folder used to store all outdated files (for example, all files in the challenge folder are moved here when a challenge
is rolled).

« cert_key.pem — private key used to sign unlock token.
« cert_pubkey.pem — public key used in certificate. Public key corresponding to cert_key.pem.
« certificate_authorization.json — configuration file used to define authorizations given by access certificate. May be edited.
» challenge_xxx folder — folder used to store files related to a challenge.
» unlock_payload_xxx.bin — payload used to unlock secure debug access.
» unlock_command_to_be_signed_dd_mm_yyyy.bin — command token that needs to be signed with cert_key.pem
« command_key.pem — private command key used to sign access certificate.
« command_pubkey.pem — public command key stored on device. Public key corresponding to command_key.pem.
« user_configuration.json — configuration file used in write config. May be edited.

When running the commander security unlock command, Simplicity Commander will use all available files to attempt to unlock the
debug access. If anything is missing, you will be asked to provide the file as an option to the command. The file will then be stored in
Security Store, unless the --nostore option is used.

5.2 Access Certificate

An access certificate is used to delegate access to a single device to another key, which is called a certificate key. This scheme sup-
ports security models where the command key is kept in a secure location, while the certificate key can be used with more lenient se-
curity practices.

The access certificate contains the serial number of the device it applies to, a description of what actions it gives access to, and the
public certificate key. An outline of the access certificate is illustrated in the following figure.

The device serial number uniquely identifies each device. It can be displayed by executing the commander security status com-
mand. The certificate_authorizations.json file sets the authorizations for the certificate. The current version of Simplicity Commander
does not support any modifications to the authorization file, but it will be available in future versions. The private certificate key corre-
sponding to the public certificate key in the certificate is used to generate a signature required to unlock debug access. For more infor-
mation, see 5.3 Challenge and Command Signing. The certificate is authenticated by signing it with the private command key corre-
sponding to the public command key written to the device. The signing of the certificate may be done by passing an unsigned certificate
to a Hardware Security Module (HSM) containing the private key or by providing the private key to Simplicity Commander (that is, for
development) using the --command-key option.

Device Serial Number

Authorization

Certificate Public Key

Access Certificate Signature
Sighed by Command private key

Figure 5.1. Access Certificate

silabs.com | Building a more connected world. Rev. 3.1 | 21

UG162: Simplicity Commander Reference Guide
Security Overview

5.3 Challenge and Command Signing

The part of the data that needs to be signed to create a valid unlock command is called the challenge. Secure Element generates this
random data. It remains unchanged until it is updated to a new random value by the security rollchallenge command.

By updating the challenge, any existing command signatures are effectively invalidated because part of the data the signature encom-
passes has changed. This allows the owner of the device to give debug access to someone else for a limited amount of time.

A command signature is created by signing a binary containing the data fields in yellow in the following figure; Simplicity Commander
sets the unlock command ID, command parameters, and the security challenge using the private key corresponding to the public key in
the access certificate.

The security gencommand command creates a file containing these elements, but does not include the signature. If the certificate pri-
vate key is not available to the user, the signature must be obtained from another party—for example, an HSM. If the user possesses
the certificate private key, Security Commander can create the signed unlock command using the security unlock command. By
passing the command signature and the access certificate to the Debug Challenge interface, the debug interface is temporarily un-
locked until the next power-on or pin reset.

Unlock Command ID

Command parameters

Device challenge

Unlock Command Signhature
Signed by Certificate Private key

Figure 5.2. Unlock Command Signature

silabs.com | Building a more connected world. Rev. 3.1 | 22

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6. Simplicity Commander Commands

This section includes the following information for using each Simplicity Commander command:
» Command Line Syntax

* Command Line Input Example

» Command Line Output Example

In cases where the Command Line Syntax is the same as the Command Line Input Example, only the former is included.

The Simplicity Commander commands are organized in the following categories:
* 6.1 Device Flashing Commands

* 6.2 Flash Verification Command

* 6.3 Memory Read Commands

* 6.4 Token Commands

* 6.5 Convert and Modify File Commands

6.6 EBL Commands

6.7 GBL Commands

6.8 Kit Utility Commands

* 6.9 Device Erase Commands

* 6.10 Device Lock and Protection Commands
» 6.11 Device Utility Commands

* 6.12 External SPI Flash Commands

* 6.13 Advanced Energy Monitor Commands
* 6.14 Serial Wire Output Read Commands
* 6.15 NVM3 Commands

* 6.16 CTUNE Commands

* 6.17 Security Commands

* 6.18 Util Commands

* 6.19 OTA Commands

* 6.20 Post-Build Command

* 6.21 RPS Commands

* 6.23 RTT Commands

* 6.22 VUART Commands

* 6.24 Serial Commands

6.1 Device Flashing Commands

The commands in this section all require a working debug connection for communicating with the device. You would normally always
use one of the J-Link connection options when running the flash command, but it is intentionally left out of most of the examples to
keep them short and concise.

silabs.com | Building a more connected world. Rev. 3.1 | 23

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.1 Flash Image File

Flashes the image in the specified filename to the target device, starting at the specified address. The address value is interpreted as a
hexadecimal number. The affected bytes will be erased before writing. If the image contains any partial flash pages, these pages will be
read from the device and patched with the image contents before erasing the page and writing back. After writing, the affected flash
areas are read back and compared. Finally, the chip is reset using a pin reset, making code execution start. The debugger to connect to
is indicated by the J-Link serial number (--serialno option). The --binary option can be used to interpret all file types as flat binaries,
bypassing any parsing of GBL, S-record, or Intel Hex files. For example, you can use this to test firmware upgrade using an internal
storage bootloader. The --include-section and --exclude-section options can be used when flashing an EIf file.

Command Line Syntax

$ commander flash <filename> --address <address> --serialno <serial number> [--binary --include-section
<section> --exclude-section <section>]

Command Line Input Example

$ commander flash blink.bin --address 0x0 --serialno 440012345

Connects to the J-Link debugger with serial number 440012345 and flashes the image in blink.bin to the target device, starting at ad-
dress 0.

Command Line Output Example

Flashing blink.s37.

Flashing 2812 bytes, starting at address 0x00000000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..
Erasing flash. ..

Flashing. ..

Verifying written data...

Resetting. - .

Finished!

DONE

6.1.2 Flash Using IP Address without Verification and Reset

Flashes the image in the specified filename to the target device, using the IP address specified. The data in flash is not verified after
flashing, and the device is left halted after flashing.

Command Line Syntax

$ commander flash <filename> --ip <IP> --halt --noverify>

Command Line Input Example

$ commander flash blink.s37 --ip 10.7.1.27 --halt --noverify

Flashes the image in blink.s37 to the target device, using the IP address 10.7.1.27. The data in flash is not verified after flashing, and
the device is left halted after flashing.

Command Line Output Example

Flashing blink.s37.

Flashing 2812 bytes, starting at address 0x00000000
Resetting. . .

Uploading flash loader...

Waiting for flashloader to become ready...

Erasing flash...

Flashing. ..

Finished!

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 24

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.3 Flash Several Files

Flashes the images to the target device. Any overlapping data is considered an error.

Command Line Syntax

$ commander flash <filename> <filename>

Command Line Input Example

$ commander flash blink.s37 userpage.hex

Flashes the images in blink.s37 and userpage.hex to the target device.

Command Line Output Example

Adding file blink.s37...

Adding file userpage.hex...

Flashing 2812 bytes, starting at address 0x00000000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. - .

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x0fe00000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. - .

Verifying written data...

Resetting. - .

Finished!

DONE

silabs.com | Building a more connected world.

Rev.3.1 | 25

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.4 Patch Flash

Writes the specified byte(s) to the flash. The affected pages will be read from the device and patched with this data before erasing the
page and writing back. When you use the --patch option, the patch memory data is interpreted as an unsigned integer. The optional
length argument can be used to define the number of bytes, up to 8 bytes. If no length is specified, the default is to patch 1 byte.

Command Line Syntax

$ commander flash --patch <address>:<data>[:length]

Command Line Input Example

$ commander flash --patch 0x120:0xAB --patch 0x3200:0xA5A5:2

Writes the specified bytes 0xAB to address 0x120 and 0xA5A5 to address 0x3200. The affected pages will be read from the device and
patched with this data before erasing the page and writing back.

Command Line Output Example

Patching 0x00000120 = OxAB. ..

Patching 0x00003200 = OxAS5A5. ..

Flashing 2048 bytes, starting at address 0x00000000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. ..

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x00003000
Resetting. . .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. ..

Verifying written data...

Resetting. - .

Finished!

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 26

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.5 Patch Using Input File

Flashes the specified application while simultaneously patching the image file and the flash of the device. If a flename is inside the file,
these bytes are patched before writing the image

Command Line Syntax

$ commander flash <filename> --patch <address>:<data>[:length] --patch <address>:<data>[:length]

Command Line Input Example

$ commander flash blink.s37 --patch 0x123:0x00FF0001:4 --patch OxOFE00004:0x00

Flashes the blink application while simultaneously patching the image file and the flash of the device. Because 0x123 is inside the file,
these bytes are patched before writing the image. Additionally, the user page will be read from the device and patched with this data
before erasing the page and writing back.

Command Line Output Example

Flashing blink.s37.

Patching 0x00000123 = OOFFO0O01...

Patching OxXOFE00004 = 00...

Flashing 4096 bytes, starting at address 0x00000000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..

Erasing flash...

Flashing. . .

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x0fe00000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..

Erasing flash...

Flashing. . .

Verifying written data...

Finished!

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 27

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.6 Flash Tokens

This section describes how to flash one or more tokens from text file(s) and/or command line options with their new values. Manufactur-
ing tokens are the only token type supported by Simplicity Commander; simulated EEPROM tokens are not supported. For more infor-
mation on manufacturing tokens, see AN961: Bringing Up Custom Nodes for the EFR32MG and EFR32FG Families.

The --tokengroup option defines which group of tokens is used. Simplicity Commander currently has built-in support for the znet
token group.

Silicon Labs recommends generating a token file from a device or image file using the tokendump command and then making modifica-
tions to this file for use with the --tokenfile option.

Command Line Syntax

$ commander flash --tokengroup <token group> -—token <TOKEN_NAME:value> —-tokenfile <filename>

Command Line Input Example

$ commander flash --tokengroup znet --token TOKEN_MFG_STRING:"l1oT Inc"

Set the token MFG_STRING to have the value 10T Inc. The TOKEN_ prefix is optional, that is, TOKEN_MFG_STRING and MFG_STRING are
equivalent.

Command Line Input Example

$ commander flash --tokengroup znet --tokenfile tokens.txt

Sets the tokens specified in tokens.txt. All tokens in the file are processed, and if a duplicate is found, it will be treated as an error.

Command Line Input Example

$ commander flash --tokengroup znet --tokenfile tokens.txt --token TOKEN_MFG_STRING:1oT Inc”

Sets the tokens specified in tokens.txt. Additionally, sets the MFG_STRING to the value given. All files and tokens specified on the com-
mand line are processed, and if a duplicate is found, it will be treated as an error.

Depending on the operating system and shell being used, some escapes may be needed to correctly specify a string. For example, on
the command line in a Windows 7 Professional Command Prompt window, execute the following command:

$ commander flash --tokengroup znet --token "TOKEN_MFG_STRING:\"10oT Inc\""

Command Line Output Example

Flashing 2048 bytes to 0x0fe00000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..
Erasing flash...

Flashing. . .

Verifying written data...

Resetting. - -

Finished!

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 28

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.2 Flash Verification Command

The verify command verifies the contents of a device against a set of files, tokens, and/or patch options without writing anything to the
flash. It works just like the verification step of the flash command, but without actually flashing first. For example, the verify command
can be used to verify that the application on a microcontroller is what you expect it to be.

Command Line Syntax

All options and examples for the flash command also apply to the verify command. The exceptions are the --halt, --masserase,
and --noverify options that do not apply to the verify command.

$ commander verify [filename] [filename ...] [patch options] [token options]

Command Line Input Example

$ commander verify myimage.hex

Command Line Output Example

Parsing file myimage.hex. ..

Verifying 52000 bytes at address 0x00000000. . .0K!
Verifying 2048 bytes at address 0x0fe00000...0K!
DONE

6.3 Memory Read Commands

The readmem command reads data from a device and can either store it to file or print it in human-readable format. The location and
length to be read from the device is defined by the --range and --region options. You can combine one or more ranges and regions
to read and combine several different areas in flash to one file.

Note: Like flash, the commands in this section all require a working debug connection for communicating with the device. You would
normally always use one of the J-Link connection options when running readmem, but this is left out of the examples to keep them short
and concise.

The --range option supports two different range formats:

» The first is <startaddress>:<endaddress>, for example, --range 0x4000:0x6000. The range is non-inclusive, meaning that all
bytes from 0x4000 up to and including Ox5FFF are read out.

» The second is <startaddress>:+<length>, which takes an address to start reading from, and a number of bytes to read. For ex-
ample, the equivalent command line input to the previous example is --range 0x4000 :+0x2000.

The --region option takes a named flash region with an @ prefix. Valid regions for use with the --region option are listed below.
Series 0 EFM32, EZR32, EFR32: @mainflash, @userdata, @lockbits, @devinfo

Series 1 EFM32, EFR32: @mainflash, Quserdata, @lockbits, @devinfo, @bootloader

Series 2 EFM32, EFR32: @mainflash, @userdata, @devinfo

EM3xx: @mfb, @cib, @fib

silabs.com | Building a more connected world. Rev. 3.1 | 29

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.3.1 Print Flash Contents
Specifies the range of memory to read from flash and prints data.

Command Line Syntax

$ commander readmem --range <startaddress>:<endaddress>

OR

Command Line Syntax

$ commander readmem --range <startaddress>:+<length>

Command Line Input Example

$ commander readmem --range 0x100:+128

Reads 128 bytes from flash starting at address 0x100 and prints it to standard out.

Command Line Output Example

Reading 128 bytes from 0x00000100. ..

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00000100: 12 FO 40 72 11 00 DF F8 CO 24 90 42 07 D2 DF F8
00000110: BC 24 90 42 03 D3 5F FO 80 72 11 00 01 EO 00 22
00000120: 11 00 DF F8 84 26 12 68 32 FO 40 72 OA 43 DF F8
00000130: 78 36 1A 60 70 47 80 B5 00 FO 90 FC FF F7 DD FF
00000140: 01 BD DF F8 70 16 09 68 08 00 70 47 38 B5 DF F8
00000150: 4C 06 00 FO 9F F9 05 OO0 ED B2 28 00 07 28 05 DO
00000160: 08 28 07 D1 00 FO 7C FC 04 00 OB EO FF F7 E9 FF
00000170: 04 00 O7 EO 40 F2 25 11 DF F8 3C 06 00 FO BO FC
DONE

6.3.2 Dump Flash Contents to File

Reads the contents of the specified user page and stores it in the specified filename. File format will be auto-detected based on file
extension (.bin, .hex, or .s37). (See 2. File Format Overview for more information on file formats.)

Command Line Syntax
$ commander readmem --region <@region> --outfile <filename>

Command Line Input Example

$ commander readmem --region @userdata --outfile userpage.hex

Reads the contents of the region named userdata and stores it in an output file named userpage.hex.

Command Line Output Example

Reading 2048 bytes from 0x0fe00000. ..
Writing to userpage.hex...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 30

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.4 Token Commands

The tokendump command generates a text dump of token data. It can take as input either a (set of) files using the same command line
options as the convert command, or a microcontroller using the same command line options as the readmem command.

The output of tokendump can either be printed to standard output or written to an output file using the --outfile option. The file written
when using the --outfile option is suitable for modification and re-use as input to the flash, verify, or convert commands using
the --tokenfi le option.

tokendump always requires a token group to be selected with the —-tokengroup option. A token group is a defined set of tokens for a
specific stack or application. Simplicity Commander only supports the znet token group.

Manufacturing tokens are the only token type supported by Simplicity Commander; simulated EEPROM tokens are not supported. For
more information on manufacturing tokens, see AN961: Bringing Up Custom Nodes for the EFR32MG and EFR32FG Families.
6.4.1 Print Tokens

Command Line Syntax

$ commander tokendump --tokengroup <token group> [--token <token name>]

Command Line Input Example

$ commander tokendump --tokengroup znet --token TOKEN_MFG_STRING --token TOKEN_MFG_EMBER_EUl_64

Reads the selected tokens from the device and prints it to stdout.

Command Line Output Example

#

The token data can be in one of three main forms: byte-array, integer, or string.
Byte-arrays are a series of hexadecimal numbers of the required length.

Integers are BIG endian hexadecimal numbers.

String data is a quoted set of ASCII characters.

#

MFG_STRING : "loT_Inc"

MFG_EMBER_EUI_64: FOB2030000570B00
DONE

6.4.2 Dump Tokens to File

This example works just like section 6.4.1 Print Tokens, except that the output is written to a file suitable for use with the --tokenfile
option (fFlash, verify, and convert commands).

Command Line Syntax
$ commander tokendump --tokengroup <token group> [--token <token name>] --outfile <filename>

Command Line Input Example

$ commander tokendump --tokengroup znet --outfile tokens.txt
Reads all tokens from the device and outputs it to the file named tokens.txt.

Command Line Output Example

Writing tokens to tokens.txt...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 31

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.4.3 Dump Tokens from Image File
If an input file is given to the tokendump command, the input is read from one or more files instead of reading from a device.
In this case, the --device option must be provided, because token locations can be different from one device family to another.

Command Line Syntax

$ commander tokendump <filename> --tokengroup <token group> --device <device> [--outfile <filename>]

Command Line Input Example

$ commander tokendump blink.hex --tokengroup znet --device EFR32MG1P --outfile tokens.txt

Command Line Output Example

Parsing file blink.hex. ..
DONE

6.4.4 Generate C Header Files from Token Groups

The tokenheader command generates a simple header file based on a custom token group. The generated header file contains pre-
processor defines that specify the location and size of each token.

See section 4. EFR32 Custom Tokens for details on custom tokens.

Command Line Syntax

$ commander tokenheader --tokengroup <group name> --device <target device> <filename>

Command Line Input Example

$ commander tokenheader --tokengroup myapp --device EFR32MG1P233F256 my_tokens.h

Command Line Output Example

Writing token header file: my_tokens.h
DONE

6.5 Convert and Modify File Commands

The convert command performs image file conversion and manipulation. It supports the following actions:
» Converting between file formats.

* Merging several image files.

» Extracting subsets of images.

» Patching bytes.

» Setting token data.

The convert command can either write its output to a file or print it to standard out in human-readable format similar to the readmem
command. When writing to a file, the file format is auto-detected based on the file extension used.

The convert command works off-line without any J-Link/debug connection. The command is device-agnostic, except when working
with tokens or Ember Bootloader (EBL) files. In this case, you must use the --device option.

Command Line Syntax

$ commander convert [infilel] [infile2 ..] [options]

silabs.com | Building a more connected world. Rev. 3.1 | 32

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.1 Combine Two Files
Converts two files with different file formats into one specified output file.

Command Line Syntax

$ commander convert <filename> <filename> [--address <address>] --outfile <filename>

Command Line Input Example

$ commander convert blink.bin userpage.hex --address 0x0O --outfile blinkapp.s37

Combines blink.bin and userpage.hex to blinkapp.s37. The address option is used to set the start address of the .bin file, since bin files
doesn’t contain any addressing information. The address value is interpreted as a hexadecimal number. If more than one .bin file is
supplied, the same start address is used for all. If this is not desirable, consider converting the bin files to s37 or hex in a separate
preparation step.

Command Line Output Example

Parsing file blink.bin...
Parsing file userpage-hex. ..
Writing to blinkapp.s37...
DONE

6.5.2 Define Specific Bytes

Like the flash command, the convert command supports the --patch option for setting arbitrary unsigned integers at any address.

Command Line Syntax

$ commander convert [filename] --patch <address>:<data>[:length] [--outfile <filename>]

Command Line Input Example

$ commander convert blink.s37 --patch OxXOFEO0000:0x12345:4 --outfile blink.hex

Converts blink.s37 to hex format, while simultaneously defining the first four bytes of the user page to 0x00012345. This works just like
flash blink.s37 --patch OxXOFE00000:0x12345:4, but works against a file instead of writing to a device flash.

Command Line Output Example

Parsing file blink.s37...

Patching OxOFEOOOOO = 0x00012345...
Writing to blink.hex...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 33

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.3 Define Tokens

Like the flash command, the convert command supports the --tokengroup, --token, and --tokenfile options for setting token
data while executing file conversion.

Command Line Syntax

$ commander convert [filename] --tokengroup <token group> [--tokenfile <filename>]
[--token <token name>

:<token data>] [--device <device>] [--outfile <filename>]

Command Line Input Example

$ commander convert blink.s37 --tokengroup znet --tokenfile tokens.txt --device EFR32MG1P --outfile blink.hex

Converts blink.s37 to hex format, while simultaneously defining the tokens defined in tokens.txt and on the command line. Works just
like the corresponding options with flash, but writes to a file instead of flash.

Command Line Output Example

Parsing file blink.s37...
Writing to blink_hex...
DONE

6.5.4 Dump File Contents

Like the readmem command, the convert command will print its output in human-readable format to standard out if no output file is
given. The value of the address option is interpreted as a hexadecimal number.

Command Line Syntax

$ commander convert <filename> [--address <bin file start address>]

Command Line Input Example

$ commander convert blink.bin --address 0x0 userpage.hex

If the —-outFile option is not used, the data is printed to stdout instead of writing to file.

Command Line Output Example

Parsing file blink.bin...

Parsing file userpage.-hex. ..

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00000000: 10 04 00 20 B5 OA 00 00 57 08 00 00 8B OA 00 00
00000010: 00 00 00 00O OO0 00 00O OO 00O OO 00 00O 00O OO 00 00
00000020: 00 00 00 00 OO0 00 00 OO 00 OO 00 00 97 OA 00 00
00000030: 00 00 00 00 00 00 00 00 D1 OA 00 00 13 06 00 00
00000040: D3 OA 00 00 D5 OA 00 00 D7 OA 00 00 D9 OA 00 00
00000050: DB OA 00 00 DD OA 00 00 DF OA 00 00 E1 OA 00 00
00000060: E3 OA 00 00 E5 OA 00 00 E7 OA 00 00 E9 OA 00 00
00000070: EB OA 00 00 ED OA 00 00 EF OA 00 00 F1 OA 00 00
<shortened data for documentation>

00000ac0: C5 OA 00 00 CO 46 CO 46 CO 46 CO 46 FF F7 CA FF
00000ad0: FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7
00000ae0: FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7
00000af0: FE E7 FE E7 00 36 6E 01 00 80 00 00

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
0fe00000: 45 23 01 00 FF FF FF FF FF FF FF FF FF FF FF FF
0fe00010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0fe00020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
<shortened data for documentation>

0fe007e0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0fe007f0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 34

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.5 Signing an Application for Secure Boot

Signs an application for use with a Secure Boot bootloader. For more information, see UG266: Silicon Labs Gecko Bootloader User's
Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander convert <image file> --secureboot --keyfile <signing key> --outfile <signed image file>

Command Line Input Example

$ commander convert example.s37 --secureboot --keyfile mykey --outfile example-signed.s37

This example signs the image file named example.s37.

Command Line Output Example

Parsing file example.s37...

Image SHA256: 4591da45b6c40a424b81753001708061d5319197adec5188fF4acc512cfh88e65
R = 8E417EB4CBC584218A8605FCF3E778F2A7810F2CAE190CB2EF4D0ODF842829CC1

S = 5B095025FFD571699725107C4666C0B8B867370E990B73E74A0502CB9788DCA8

Writing to example-signed.s37...

DONE

6.5.6 Signing an Application for Secure Boot using a Hardware Security Module

Prepares an application for signing for use with a Secure Boot enabled bootloader using a Hardware Security Module (HSM). For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Boot-
loader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander convert <image file> --secureboot --extsign --outfile <image file for external signing>

Command Line Input Example

$ commander convert example.s37 --secureboot --extsign --outfile example.s37.extsign

This example creates an output in the form that an HSM can create a signature over of the entire file. This signature can again be
written to the file using the command described in 6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a
Hardware Security Module.

Command Line Output Example

Parsing file example.s37. ..
Writing to example.s37.extsign...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 35

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware Security Module

Signs an application for use with a Secure Boot bootloader using a signature created by a Hardware Security Module (HSM). For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Boot-
loader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander convert <image file> --secureboot --signature <signature from external signing> --outfile <signed image file>

Command Line Input Example

$ commander convert example.s37 --secureboot --signature example.s37._extsign.sig --outfile example-signed.s37

This example signs the image file example.s37 using a signature obtained from an HSM using the .extsign file generated in 6.5.6 Sign-
ing an Application for Secure Boot using a Hardware Security Module. The input file (example.s37) used with this function must be the
same file as was used when generating the .extsign file in 6.5.6 Signing an Application for Secure Boot using a Hardware Security
Module.

Command Line Output Example

Parsing file example.s37...

Parsing signature file example.s37._extsign.sig. ..

R = 8E417EB4CBC584218A8605FCF3E778F2A7810F2CAE190CB2EF4D0ODF842829CC1
S = 5B095025FFD571699725107C4666C0B8B867370E990B73E74A0502CB9788DCA8
Writing to example-signed.s37...

Overwriting file: example-signed.s37...

DONE

6.5.8 Adding a CRC32 for Gecko Bootloader

This option adds a CRC32 (32-bit cyclic redundancy check) of the image that the Gecko Bootloader can use to ensure image integrity
when Secure Boot is not used. This feature requires that an ApplicationProperties_t struct is present in the image. For more details
on the ApplicationProperties_t struct, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or
UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander convert <image file> --crc --outfile <image file with CRC>

Command Line Input Example

$ commander convert example.s37 --crc --outfile example-crc.s37

This example adds a checksum to the image file named example.s37.

Command Line Output Example

Parsing file example.s37...
Appending CRC32 checksum. ..
Writing to example-crc.s37...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 36

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.9 Signing an Application for Secure Boot using an Intermediary Certificate

Signs an application for use with a Secure Boot bootloader using an intermediary certificate. When using an intermediary certificate, the
ApplicationProperties_t struct must be present in the image. For more information on the ApplicationProperties_t struct, see
UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Bootloader User's Guide
for GSDK 4.0 and Higher.

Secure Boot verification via an intermediary certificate is only supported on Series 2 EFR32 devices. Secure Boot must be enabled
before signing a bootloader with an intermediary certificate. For more information about enabling Secure Boot, see 6.17.16 Write User
Configuration.

There are two ways of signing the application:
» Providing the private keyfile corresponding to the public key embedded in the certificate directly.
» Preparing an application for signing with a Hardware Security Module (HSM) by generating an output in the form that an HSM can

create a signature over the entire file. The signature can then be written to the file by passing it to Simplicity Commander as descri-
bed below.

Note: Simplicity Commander does currently not support the generation of certificates for Secure Boot signing. This will be available in a
future version of Simplicity Commander.

Command Line Syntax

$ commander convert <image file> --secureboot --certificate <certificate file> --keyfile <keyfile> --outfile <signed image
file>

$ commander convert <image file> --secureboot --certificate <certificate file> --extsign --outfile <image file
for external signing>

$ commander convert <image file> --secureboot --certificate <certificate file> --signature <signature> --
outfile <signed image file>

Command Line Input Example

$ commander convert example.s37 --secureboot --certificate example_certificate._bin --keyfile public_certificate_key.pem --
outfile example-signed.s37

This example signs the image file example.s37 using an intermediary certificate. The keyfile used to sign the application corresponds to
the public key embedded in the certificate. Simplicity Commander always validates the key before signing the application.

Command Line Output Example

Parsing file example.s37. ..

Private key matches public key in certificate.

R = 137EA7A19F6100E1EFA5C185CA952B67137D0597F4A89C7543BC5A49A7A6681E
S = C537A833018C3A23CF1EBDBAB04559482B0B5333A7C21556E6B42EDA1D1A5102
Writing to example-signed.s37...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 37

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.10 Add a Trust Zone Decryption Key

Adds an Advanced Encryption Standard (AES) encryption/decryption key to a bootloader image for TrustZone secure key storage. Re-
quires Application Properties struct version 1.2 or higher.

Command Line Syntax
$ commander convert <image file> --aeskey <keyfile> --outfile <bootloader with decryption key>

Command Line Input Example

$ commander convert my_bootloader.s37 --aeskey my key.txt --outfile my bootloader_ with_key.s37

Adds the decryption key my_key.txt to the bootloader image named my_bootloader_with_key.s37.

Command Line Output Example

Parsing file my bootloader.s37...
Writing to my_bootloader_with_key.s37. ..
DONE

6.5.11 Extract Sections from ELF Files

Extract sections from an Executable and Linkable Format (ELF) file and convert into the specified output file. If neither the --include-
section nor the --exclude-section option is used, Simplicity Commander will extract all .text sections, as well as sections of type
progbits with address not equal to 0xO0.

Command Line Syntax
$ commander convert <filename> [--include-section <section> --exclude-section <section>] --outfile <filename>

Command Line Input Example

$ commander convert application.out --include-section text_apploader --outfile apploader.s37

Creates an S-record file from the text_apploader section of an ELF file.

Command Line Output Example

Parsing file application.out. ..
Writing to apploader.s37...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 38

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6 EBL Commands

6.6.1 Print EBL Information

Parses and prints EBL information from the specified .ebl file.
Command Line Syntax

$ commander ebl print <filename>

Command Line Input Example

$ commander ebl print example.ebl

Command Line Output Example

Found EBL Tag = 0x0000, length 140, [EBL Header]
Version: 0x0201
Signature: OXE350 (Correct)
Flash Addr: 0x00004000

AAT CRC: Ox53BC1F4E
AAT Size: 128 bytes
HalAppBaseAddressTableType
Top of Stack: 0x20006980
Reset Vector: 0x000121F9
Hard Fault Handler: 0x00012125
Type: Ox0AA7
HalVectorTable: 0x00004100
Full AAT Size: 172
Ember Version: 5.7.0.0
Ember Build: 0
Timestamp: Ox561E581F (Wed Oct 14, 2015 13:26:55 UTC [+0100])
Image Info String:"*
Image CRC: O0x2ACEOC5B
Customer Version: 0x00000000
Image Stamp: OxF4271F50BA2E2FBA

Found EBL Tag = OxFDO3, length 1924, [Erase then Program Data]
Flash Addr: 0x00004080

Found EBL Tag = OxFDO3, length 2052, [Erase then Program Data]
Flash Addr: 0x00004800

(32 additional tags of the same type and length.)

Found EBL Tag = OxFDO3, length 1772, [Erase then Program Data]
Flash Addr: 0x00015000

Found EBL Tag = OxFCO04, length 4, [EBL End Tag]
CRC: OxDBC82DA5

The CRC of this EBL file is valid (Oxdebb20e3)

File has 0 bytes of end padding.-

Calculated image stamp matches value found in AAT.

DONE

6.6.2 EBL Key Generation

Generates a keyfile to be used for encryption or decryption and outputs the keyfile to the specified filename.
Command Line Syntax

$ commander ebl keygen --type aes-ccm --outfile <filename>

Command Line Input Example
$ commander ebl keygen --type aes-ccm --outfile key.txt
Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 39

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6.3 EBL File Creation

Creates an EBL file from an application image and writes the output to the specified filename. Can optionally encrypt the EBL file using
a keyfile generated by the ebl keygen command.

Command Line Syntax

$ commander ebl create <eblfile> --app <filename> --device <part number> [--encrypt <keyfile>]
Command Line Input Example

$ commander ebl create app-ebl.encrypted --app example.s37 --device EFR32F256 --encrypt key.txt

Command Line Output Example

Parsing file example .s37...
Parse .s37 format for flash
Flash Usage:

Reserved for Bootloader: 0x00000000-0x00003FfFF (16384 bytes)
CODE and Tables: 0x00004000-0x00014ddb (69084 bytes)
CONST and INITC: 0x00014ddc-0x000184ab (14032 bytes)
Available for future use: 0x000184ac-0x0003dfff (154452 bytes)
Reserved for SIMEE: 0x0003e000-0x0003fFfFfF (8192 bytes)

Usage Summary:
262144 total bytes Flash, 107692 used, 154452 available

Setting AAT timestamp to current time: O0x586elec9
Create ebl image file

Wrote image stamp into AAT.

Encrypting EBL...

Unencrypted input file: ebl_plaintext_ux8544_ebl
Encrypt output file: app-ebl._encrypted
Randomly generating nonce

Using /dev/random for random number generation

Gathering sufficient entropy... (may take up to a minute)...
Created ENCRYPTED ebl image file
DONE

6.6.4 EBL File Parsing

Parses an EBL file and writes the application image to the specified filename. Optionally decrypts an encrypted EBL file. The keyfile
must be the same as was used for encrypting the encrypted EBL file.

Command Line Syntax

$ commander ebl parse <ebl filename> --app < filename> --device <part number> [--decrypt <key filename>]

Command Line Input Example

$ commander ebl parse example.ebl.encrypted --app app.s37 --device EFR32F256 --decrypt ../aeskey

Command Line Output Example

Unencrypted output file: ebl_plaintext L10567.ebl
Encrypt input file: example.ebl .encrypted
MAC matches. Decryption successful.

Created DECRYPTED ebl image file

Parse .ebl format for flash

Create image file

Writing application to app-s37...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 40

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6.5 Memory Usage Information from AAT

For applications containing an Application Address Table (AAT), Simplicity Commander can analyze the memory usage of the applica-
tion. The AAT is included in Zigbee applications.

RAM usage is only available for EM3xx applications. Applications built for EFR32 can only be analyzed for flash usage.
Command Line Syntax
$ commander ebl aat-usageinfo <filename> --device <part number>

Command Line Input Example

$ commander ebl aat-usageinfo example.s37 --device EM357

Command Line Output Example

Parse .s37 format for flash

Approximate Usage Information:

RAM Usage:
APPLICATION_CONFIGURATION_HEADER usage: 0x20000000-0x20000fc3 (4036 bytes)
Available for future use: 0x20000fc4-0x2000195F (2460 bytes)
Call Stack: 0x20001960-0x200022bf (2400 bytes)
Globals and Statics: 0x200022c0-0x20002fe8 (3369 bytes)
Alignment Overhead: 0x20002fe9-0x20002fef (7 bytes)
NO_INIT and Debug Channel: 0x20002FF0-0x20002FFfF (16 bytes)

Flash Usage:
Reserved for Bootloader: 0x08000000-0x08001FFF (8192 bytes)
CODE and Tables: 0x08002000-0x08011cdf (64736 bytes)
CONST and INITC: 0x08011ce0-0x08014263 (9604 bytes)
Available for future use: 0x08014264-0x0802dfff (105884 bytes)
Reserved for SIMEE: 0x0802e000-0x0802FFfFf (8192 bytes)

Usage Summary:
12288 total bytes RAM, 9828 used, 2460 available
196608 total bytes Flash, 90724 used, 105884 available

DONE

6.7 GBL Commands

6.7.1 GBL File Creation

Creates a Gecko Bootloader (GBL) file from an application image and writes the output to the specified filename. Can optionally encrypt
the GBL file using a keyfile generated by the gbl keygen command.

Command Line Syntax

$ commander gbl create <gblfile> --app <filename> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create app-gbl.encrypted --app example.s37 --encrypt key.txt

Command Line Output Example

Parsing file example.s37...
Initializing GBL file...

Adding application to GBL...
Encrypting GBL...

Writing GBL file app.gbl.encrypted...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 41

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.2 GBL File Creation with Compression

Creates a compressed Gecko Bootloader (GBL) file from an application image and writes the output to the specified filename. Can op-
tionally encrypt the GBL file using a keyfile generated by the gbl keygen command.

The currently supported compression algorithms are 1z4 and 1zma. The bootloader on the targeted devices must support decompress-
ing the selected compression type.

Command Line Syntax

$ commander gbl create <gblfile> --app <filename> --compress <compression algorithm> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create app.gbl --app example.s37 --compress 1z4

Command Line Output Example

Parsing file example.s37...
Initializing GBL file...
Adding application to GBL...
Compressing using 1z4. ..
Writing GBL file app-gbl...
DONE

6.7.3 Create a GBL File for Bootloader Upgrade

Creates a Gecko Bootloader (GBL) file from a bootloader image and writes the output to the specified bootloader image filename. For
more information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko
Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax
$ commander gbl create <gblfile> --bootloader <bootloader image file> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create bootloader.gbl --bootloader bootloader.s37

Command Line Output Example

Initializing GBL file...

Adding bootloader to GBL...
Writing GBL file bootloader.gbl...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 42

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.4 Creating a GBL File for Secure Element Upgrade

The Secure Element on EFR32xG21 devices can be upgraded using a Secure Element upgrade binary provided by Silicon Labs. This
command creates a GBL file containing a Secure Element upgrade file and writes the output to the specified GBL filename. For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Boot-
loader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander gbl create <gblfile> --seupgrade <secure element upgrade file> --app <application image>

Command Line Input Example

$ commander gbl create se-upgrade.gbl --seupgrade secure-element-1.0.0.seu --app myapp-s37

Command Line Output Example

Parsing file myapp.s37...

Initializing GBL file...

Adding application to GBL...

Adding Secure Element upgrade image to GBL...
Writing GBL file se-upgrade.gbl...

DONE

6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Application

Creates a GBL file, signs the GBL file, and encrypts the GBL file. For more information, see UG266: Silicon Labs Gecko Bootloader
User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander gbl create <gblfile> --app <app image file> --sign <signing key> [--encrypt <encryption key>]

Command Line Input Example

$ commander gbl create example.gbl --app example.s37 --sign ecdsakey --encrypt aeskey

Command Line Output Example

Parsing file example.s37. ..

Initializing GBL file...

Adding application to GBL...

Encrypting GBL. ..

Signing GBL...

Image SHA256: 74b126bdbad680470487e32d7d7b3ec7f12b15d9988e028b26c2dd54f81dcTb7
R = 055A23A44CDEDA34506EE72F4530FE174CFC85F48933C1379C1360F8BC1AA75B

S = 1C9EF6C3F5CAAOD5B92ECC2569E4A8251F8561DAF52DES54D3E59591A5001B9EA

Writing GBL file example.gbl...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 43

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module

It is often not desirable to keep the private key used for signing locally on the computer that creates the GBL images. A good way to
increase security is to use a Hardware Security Module (HSM) to generate the actual signatures. Simplicity Commander supports using
a three-step process:

1. Create a partial GBL file for external signing using Simplicity Commander.
2. Create an Elliptic Curve Digital Signature Algorithm (ECDSA) signature of the partial GBL file using an HSM.
3. Use Simplicity Commander to sign the partial GBL file using the signature from the HSM, and create a complete GBL file.

Step 1 is described in this section. Step 2 is specific to the HSM you are using. Step 3 is described in 6.7.7 Creating a Signed GBL File
Using a Hardware Security Module. For more information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and
Lower or UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander gbl create <output partial GBL file for external signing> --app <app image file>
--extsign [--encrypt <encryption key>]

Command Line Input Example

$ commander gbl create example.gbl._extsign --app example.s37 --extsign --encrypt aeskey

Command Line Output Example

Parsing file example.s37...
Initializing GBL file...

Adding application to GBL...

Encrypting GBL...

Preparing GBL for external signing...
Writing GBL file example.gbl._extsign...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 44

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.7 Creating a Signed GBL File Using a Hardware Security Module

Creates a signed GBL file from a partial GBL file and an ECDSA signature file in Distinguished Encoding Rules (DER) format generated
as described in 6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module . For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Boot-
loader User's Guide for GSDK 4.0 and Higher.

Silicon Labs recommends that you use the --verify option with the public key corresponding to the private key used by the HSM to
ensure the integrity of the generated GBL file.

Command Line Syntax

$ commander gbl sign <partial GBL file for external signing> --signature <signature from HSM>
[--verify <public key file>] --outfile <signed GBL file>

Command Line Input Example

$ commander gbl sign example.gbl.extsign --signature example.gbl._extsign.sig --verify ecdsakey.pub
--outfile example-signed.gbl

Command Line Output Example

Reading GBL data from example.gbl.extsign. ..

Parsing signature file example.gbl_extsign.sig. ..

R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing signature to GBL...

Verifying GBL. ..

Image SHA256: 4d7325b09adeOea272eb9895096c8137b18451f694ad4eca9a5782Ff5c08deal3a
Q_X: 60BA97B850291456217C2149061AA344B32BBFB69A91A94BBF2F274744308D39
Q_Y: 41927DA5DB171E1C723C6B59C2BC88EDFF5A37014B0473775BA5B15921686ECA
R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing GBL file example-signed.gbl...

DONE

6.7.8 GBL File Parsing

Parses a Gecko Bootloader (GBL) file and writes the application image to the specified filename. Optionally decrypts an encrypted GBL
file. The keyfile must be the same as was used for encrypting the encrypted GBL file.

Command Line Syntax
$ commander gbl parse <gbl filename> --app < filename> [--decrypt <key filename>]

Command Line Input Example

$ commander gbl parse example.gbl.encrypted --app app-s37 --decrypt key.txt

Command Line Output Example

Reading GBL data...

Decrypting GBL...

Reading application. ..

Writing application to app-s37...
DONE

6.7.9 GBL Key Generation

This command is deprecated. Please see 6.18.1 Key Generation for more information about key generation.

6.7.10 Generating a Signing Key

This command is deprecated. Please see 6.18.2 Generating a Signing Key for more information about generating a signing key.

silabs.com | Building a more connected world. Rev. 3.1 | 45

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.11 Generate a Signing Key Using a Hardware Security Module

This command is deprecated. Please see 6.18.3 Key to Token for more information about generating a signing key using a hardware
security module.

6.7.12 Creating a Signed GBL File Using a Hardware Security Module

Creates a signed GBL file from a partial GBL file and an ECDSA signature file in Distinguished Encoding Rules (DER) format generated
as described in 6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module . For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Boot-
loader User's Guide for GSDK 4.0 and Higher.

Silicon Labs recommends that you use the --verify option with the public key corresponding to the private key used by the HSM to
ensure the integrity of the generated GBL file.

Command Line Syntax

$ commander gbl sign <partial GBL file for external signing> --signature <signature from HSM>
[--verify <public key file>] --outfile <signed GBL file>

Command Line Input Example

$ commander gbl sign example.gbl._extsign --signature example.gbl.extsign.sig --verify ecdsakey.pub
--outfile example-signed.gbl

Command Line Output Example

Reading GBL data from example.gbl._extsign...

Parsing signature file example.gbl _extsign.sig...

R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing signature to GBL...

Verifying GBL. ..

Image SHA256: 4d7325b09ade0ea272eb9895096c8137b18451f694a4ecala5782f5c08deal3a
Q_X: 60BA97B850291456217C2149061AA344B32BBFB69A91A94BBF2F274744308D39
Q_Y: 41927DA5DB171E1C723C6B59C2BC88EDFF5A37014B0473775BA5B15921686ECA
R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing GBL file example-signed.gbl...

DONE

6.7.13 Create a GBL File from an ELF File

Creates a Gecko Bootloader (GBL) file from an Executable and Linkable Format (ELF) file and writes the output to the specified file. If
neither the --include-section nor the —--exclude-section option is used, Simplicity Commander will include all sections that appear
to be part of the application.

Command Line Syntax

$ commander gbl create <gblfile> --app <application image file> [--include-section <section> --exclude-section
<section>]

Command Line Input Example

$ commander gbl create app.gbl --app app.out --exclude-section text_apploader --exclude-section text_signature
Creates a GBL file containing an ELF application, excluding the text_apploader and text_signature sections from the application.

Command Line Output Example

Parsing file app.out...

Initializing GBL file...

Adding application to GBL...
Encrypting GBL...

Writing GBL file app.gbl.encrypted...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 46

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.14 Create an Encrypted GBL File with an Unencrypted Secure Element Upgrade File

Creates an encrypted Gecko Bootloader (GBL) file containing an unencrypted Secure Element upgrade file and then writes the output
to the specified GBL file.

Command Line Syntax

$ commander gbl create <gblfile> --seupgrade <secure element upgrade file> --seunencrypted --app <application
image> --encrypt <AES key file>

Command Line Input Example

$ commander gbl create se-upgrade.gbl --seupgrade secure-element.seu --seunencrypted --app myapp.s37 --encrypt
aes-key.txt

Creates an encrypted GBL file with a Secure Element upgrade file outside the encrypted area of the file.

Command Line Output Example

Parsing file myapp.s37...

Initializing GBL file...

Adding application to GBL...

Adding Secure Element upgrade image to GBL...
Encrypting GBL...

Writing GBL file se-upgrade.gbl...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 47

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.15 Create a GBL File with Version Dependencies

Any version dependencies between application, bootloader, and secure element upgrade files in a Gecko Bootloader (GBL) file may be
resolved using the --dep-app, --dep-boot, and --dep-se options.

Command Line Syntax

$ commander gbl create <gblfile> --seupgrade <secure element upgrade file> --app <application image> --dep-app
<statement:version> --dep-se <staetment:version> --dep-boot <statement:version>

Dependency Statement

The dependency statement may be one of the following:

Simplicity Commander Input Statement

9 Greater than

geq Greater than or equal
eq Equal

leq Less than or equal

I Less than

The --dep-app option takes an uint32 as version input, while the --dep-se and --dep-boot options take the version input in the for-
mat major.minor.patch.

Command Line Input Example

$ commander gbl create se-upgrade.gbl --app myapp.s37 --seupgrade secure-element.seu --bootloader my-
bootloader.s37 --dep-app geq:0x01020002 --dep-boot 1:0.5.7 --dep-se g:1.2.3

Creates a GBL where the application version must be greater than or equal to version 0x01020002, bootloader version must be less
than version 0.5.7, and secure element upgrade version must be greater than version 1.2.3.

Command Line Output Example

Parsing file myapp.s37

Initializing GBL file...

Setting version dependency of Application to >= 0x00120002
Setting version dependency of Bootloader to < 0x00050007
Setting version dependency of SE upgrade image to > 0x00010203
Adding version dependencies to GBL...

Adding application to GBL...

Adding bootloader to GBL...

Adding Secure Element upgrade image to GBL...

Writing GBL file se-upgrade.gbl

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 48

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.16 Create a Delta GBL File

Creates a Gecko Bootloader (GBL) file which contains the difference between two specific application versions for minimal upgrade file
size. For more information on delta updates, see UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander gbl create <gblfile> --app <new application image file> --delta-app <old application image file>
[--compress Izma]lz4]

Symbol Information

The calculation of the delta between two application versions is significantly improved by having access to symbol information. When
given files without symbol information (typically srec or hex files), Simplicity Commander will try to find ELF files with the same name in
the same directory, and extract the symbol information from the ELF file. For example, if Commander is given --app release/1.3.0/
app-.s37 --delta-app release/1.2.0/app.s37, it will try to find app.axf, app.out, or app-elf in both of the release/1.3.0/ and
release/1.2.0/ folders. Symbol information for both versions is required.

Secure Boot

If using secure boot, please ensure that both the old and the new application file is signed. The signature is then restored as part of
applying the delta patch.

Additionally, delta GBL files may be signed and/or encrypted just like regular GBL files. See e.g. 6.7.5 Creating a Signed and Encrypted
GBL Upgrade Image File from an Application for details.

Version Dependency

Simplicity Commander will automatically extract the version of the old application and add a version dependency tag to the GBL. See
6.7.15 Create a GBL File with Version Dependencies for details on version dependencies. If a specific version is provided with the —-
dep-app option, this is used instead of the version found in the application image.

Compression
Delta GBL files can be compressed using LZMA or LZ4 compression. See 6.7.2 GBL File Creation with Compression for details.

Command Line Input Example

$ commander gbl create delta-upgrade.gbl --app app_1.-3.0.s37 --delta-app app_1-2.3.s37

Command Line Output Example

Parsing file app_1.3.0.s37...

Initializing GBL file...

Parsing file app_1.2.3.s37...

Filling with OxFF from 0x0800631c to 0x08006320

Automatically adding dependency to the detected version of "--delta-app"...
Setting version dependency of Application to = 0x00010203

Writing GBL file delta-upgrade.gbl...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 49

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8 Kit Utility Commands

6.8.1 Firmware Upgrade
Updates the application running on the board controller on the kit to a new version provided in an .emz file by Silicon Labs.

Command Line Syntax

$ commander adapter fwupgrade --serialno <J-Link serial number> <filename>

Command Line Input Example

$ commander adapter fwupgrade -s 440050184 S1015B_wireless_stk_firmware_package_ Ov14pOb435.emz

Command Line Usage Output

Checking manifest. ..

Checking if target is in bootloader...
Waiting for kit to restart...

Package is usable

Deleting previous firmware...
Installing files. ..

Resetting target...

Waiting for kit to restart...
Finished!

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 50

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.2 Kit Information Probe

Retrieves information about a connected kit. Lists information about the kit part number and name, connected boards, and firmware
version.

The options --kit, --boards, and --firmware limit the output to just kit information, board list, or firmware information, respectively.

The vCOM Port line informs which virtual COM port name the kit has been assigned by the operating system. On Windows this is on
the form COM<number>. On Linux and macOS, the name corresponds to a special file in the /dev/ folder. E.g. VCOM Port: ttyACMO
indicates that the serial port is available at /dev/ttyACMO. This line is not always available, and may be omitted from the output.

The nickname, IP address and MAC address of the adapter may be omitted from the output if the information is not available to Simplic-
ity Commander.

Command Line Syntax

$ commander adapter probe --serialno <J-Link serial number> [--kit] [--boards] [--Ffirmware]

Command Line Input Example

$ commander adapter probe --serialno 440050184

Command Line Usage Output

Kit Information:

Kit Name
Kit Part Number

EFR32 Mighty Gecko 2400/915 MHz Dual Band Wireless Starter Kit
WSTK6002A Rev. A0O

J-Link Serial : 440050184
Debug Mode : MCU

AEM Supported : 1

VCOM Supported : 1

IP Supported : 1

VCOM Port : Com3
Nickname : Lab-01

IP Address : 10.5.103.23

MAC Address DO:CF:5E:CO:FF:EE

Firmware Information:

FW Version : 0v14p0b435
Board List:
Name Wireless Starter Kit Mainboard

BRD4001A Rev. AO01
152607557

Part Number
Serial Number

EFR32MG 2400/915 MHz 19.5 dBm Dual Band Radio Board
Part Number BRD4150B Rev. BOO

Serial Number 151300035

Target Device : EFR32MG1P233F256GM48-C0O

DONE

Name

silabs.com | Building a more connected world. Rev. 3.1 | 51

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.3 Adapter Reset Command

This command resets the adapter itself, causing a restart. The adapter reset command is usually not required during normal opera-
tion.

An error about “Communication timed out” may occur because the adapter sometimes restarts before it has time to reply to the com-
mand.

Command Line Syntax
$ commander adapter reset

Command Line Input Example

$ commander adapter reset

Command Line Output Example

Communication timed out: Requested 76 bytes, received 0 bytes !
DONE

6.8.4 Adapter Debug Mode Command

This command sets or reads the current debug mode of the adapter. The supported debug modes are typically IN, OUT, MCU, and
OFF in addition to MINI for Wireless Pro Kits and TARGET for Development Kits. See the Quick Start Guide for your kit for a descrip-
tion of the debug modes it supports.

Command Line Syntax
$ commander adapter dbgmode [mode]

Command Line Input Example

$ commander adapter dbgmode MCU

Command Line Output Example

Setting debug mode to MCU...
DONE
6.8.5 List Adapter IP Configuration Command

The adapter ip command gets or sets the IP configuration of the adapter. With no options, the current configuration is retrieved and
displayed.

Command Line Syntax

$ commander adapter ip

Command Line Input Example

$ commander adapter ip

Command Line Output Example

IP Address: 192.168.0.5/24

Gateway : 192.168.0.1
DNS Server: 192.168.0.1
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 52

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.6 Adapter DHCP Command

This command sets up the adapter to use DHCP to automatically retrieve IP, gateway and DNS addresses. This is the default con-
figuration. After enabling DHCP, the adapter must be restarted for the change to take effect.

Command Line Syntax

$ commander adapter ip --dhcp

Command Line Input Example

$ commander adapter ip --dhcp

Command Line Output Example

Enabling DHCP. The adapter must be restarted to acquire a new IP address.
DONE

6.8.7 Set Static IP Configuration Command
This command sets the IP address of the adapter in Classless Inter-Domain (CIDR) notation.

Command Line Syntax

$ commander adapter ip --addr <IP address/prefix> [--gw <gateway address>] [--dns <dns server address>]

Command Line Input Example

$ commander adapter ip --addr 192.168.1.5/24 --gw 192.168.1.1 --dns 192.168.1.1

Command Line Output Example

Setting IP Address: 192.168.1.5/24
Setting gateway: 192.168.1.1
Setting DNS server: 192.168.1.1
DONE

6.8.8 Get or Change Adapter Nickname

You can get, set and clear the adapter's nickname using the adapter nick command.
If no new nickname is provided, the adapter's current nickname will be displayed.

If you provide a new nickname, this will be stored in the adapter.

Providing the --clear option will clear the adapter's stored nickname.

Command Line Syntax

$ commander adapter nick [nickname] [--clear]

Command Line Input Example

$ commander adapter nick "Hardware Lab"

This command line sets the adapter nickname to "Hardware Lab".

Command Line Output Example

Nickname set to "‘Hardware Lab'
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 53

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.9 Get or Change Target Voltage
You can get and set the voltage that the adapter supplies to the target device using the adapter voltage command.
If no voltage is provided, the currently configured voltage and the measured voltage will be displayed.

If a voltage is provided, the voltage will be set. This setting does not persist across adapter reboots. After the voltage has been
changed, the Advanced Energy Monitor (AEM) will automatically calibrate itself (see 6.13.4 Calibrate the Advanced Energy Monitor for
more details). Providing the option --nocal ibrate will skip the automatic calibration.

Note: Changing the target voltage is not supported on all adapter boards.

Command Line Syntax

$ commander adapter voltage [voltage] [--nocalibrate]

Command Line Input Example

$ commander adapter voltage 3.3

This command line sets the target voltage to 3.3 V, allowing for the AEM to calibrate itself after the new voltage has been set.

Command Line Output Example

Voltage set to 3.3V

Configured voltage : 3.3 V

AEM should be calibrated due to a change in target voltage.

Calibrating AEM due to a change iIn target voltage since last calibration (target power is off during
calibration).

Successfully calibrated AEM.

DONE

6.8.10 Get or Change Target Power
You can get and set the power state of the target device using the adapter power command.
If no argument is provided, the current target power state will be displayed.

If 'on' or 'off" is provided, the target power will be enabled or disabled, respectively. This setting does not persist across adapter reboots.

Note: Controlling target power is not supported on all adapter boards.

Command Line Syntax
$ commander adapter power [on]off]
Command Line Input Example

$ commander adapter power off

This command line takes the RPS image 'app.rps' and loads it onto the device.

Command Line Output Example

Target power turned off
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 54

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.9 Device Erase Commands

6.9.1 Erase Chip

Executes a mass erase for devices where it is supported. On EFM32G and EFM32TG, all pages are erased instead, which is signifi-
cantly slower.

Command Line Syntax
$ commander device masserase

Command Line Usage Output

Erasing chip...
DONE

6.9.2 Erase Region

Erases a named region. For more information on the --region option, see section 6.2 Flash Verification Command.
Command Line Syntax

$ commander device pageerase --region <@region>

Command Line Input Example

$ commander device pageerase --region @userdata

Command Line Output Example

Erasing range 0x0fe00000 - Ox0fe00800
DONE

6.9.3 Erase Pages in Address Range

Erases all flash pages affected by the given memory range. If the given range doesn't match page boundaries, it will be extended to
always erase entire pages.

Command Line Syntax
$ commander device pageerase --range <startaddress>:<endaddress>

Command Line Input Example

$ commander device pageerase --range 0x200:0x6000

Erases all flash pages 0 to 11 or 0x0000 to Ox5FFF (assuming a page size of 2 kB).

Command Line Output Example

Erasing range 0x00000000 - 0x00006000
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 55

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.10 Device Lock and Protection Commands

6.10.1 Debug Lock

Locks access to the debug interface of the device. This feature is only supported on EFM32 and EFR32 devices. The --debug enable
option is no longer required as of Simplicity Commander version 1.8.

Command Line Syntax
$ commander device lock [--debug enable]

Command Line Usage Output

Locking debug access...

DONE

6.10.2 Debug Unlock

Unlocks access to the debug interface of the device. This triggers a mass erase if the device was locked before.
This feature is only supported on EFM32 and EFR32 devices.

Command Line Syntax

$ commander device lock --debug disable

Command Line Usage Output

ERROR: Could not get MCU information

Removing all locks/protection...

Unlocking debug access (triggers a mass erase)...
DONE

In Simplicity Commander version 1.8 an alternative command syntax was introduced.
Command Line Syntax
$ commander device unlock

Command Line Usage Output

Unlocking debug access (triggers a mass erase). ..
Chip successfully unlocked.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 56

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.10.3 Write Protect Flash Ranges

Protects all flash pages affected by the given memory range from any writes or erases. The available granularity of flash write protec-
tion is device-dependent. Consult the device reference manual for details. For EFM32 and EFR32 devices, for example, the write pro-
tect feature operates on flash pages. On EM3xx devices, this works on 8 kB or 16 kB blocks.

For all devices, if the given range doesn't match the block size supported by the device, it will be extended to always protect entire
regions.

Command Line Syntax
$ commander device protect --write --range <startaddress>:<endaddress>

Command Line Input Example

$ commander device protect --write --range 0x0:0x4000

Protects all flash pages in the first 16 kB from being erased or written to. Useful for protecting a bootloader from being modified by
buggy application code, for example.

Command Line Output Example

Write protecting range 0x00000000 - 0x00004000
DONE

6.10.4 Write Protect Flash Region

Protects all flash pages in the named region from being written to or erased.
Command Line Syntax

$ commander device protect --write --region @<region>

Command Line Input Example

$ commander device protect --write --region @mainflash
Protects the entire main flash from being written to or erased.

Command Line Output Example

Write-protecting all pages in main flash.
DONE

6.10.5 Disable Write Protection
Disables write protection for all pages.

Command Line Syntax

$ commander device protect --write --disable

Command Line Output Example

Disabling all write protection...
DONE

6.11 Device Utility Commands

silabs.com | Building a more connected world. Rev. 3.1 | 57

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.11.1 Device Information Command

Shows detailed information about the target device.
Command Line Syntax

$ commander device info

Command Line Usage Output

Part Number : EFR32MG1P233F256GM48
Die Revision : A0

Production Ver - 0O

Flash Size : 256 kB

SRAM Size : 32 kB

Unique ID = 000b57000003b2f0
DONE

6.11.2 Device Reset Command
Resets a device using a pin reset.

Command Line Syntax

$ commander device reset

Command Line Usage Output

Resetting chip...
DONE

6.11.3 Device Recovery Command

On EFM32 and EFR32 devices, this command tries to recover a device that has lost debug access due to misconfiguration of clocks,
GPIO pins, or similar. Recovery is not supported on all devices, and in some cases requires the kit corresponding to the device you
want to recover, for example, an EFM32TG STK to recover an EFM32TG device.

On EM3xx devices, this command can be used to recover from option byte failure.
Command Line Syntax
$ commander device recover

Command Line Usage Output

Recovering "bricked" device...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 58

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.11.4 Device Z-Wave QR Code Command

The Z-Wave QR code command is used to read out the QR code from all Z-Wave devices. The QR code is 90 bytes, displayed as
ASCII characters, and stored in the TOKEN_MFG_ZW_QR_CODE manufacturing token.

The QR code is generated in the chip during initialization. When the QR code is correctly initialized, the value of the manufacturing
token TOKEN_MFG_ZW_INITIALIZED is changed from OxFF to 0x00. The optional --timeout option is used to indicate how long
Simplicity Commander should wait for the QR code to be initialized. If no time is given, the default is 5000 ms.

Command Line Syntax

$ commander device zwave-grcode [--timeout <timeout in ms>]

Command Line Input Example

commander device zwave-grcode --timeout 5000

Command Line Usage Output

QR code: 900132782003515253545541424344453132333435212223242500100435301537022065520001000000300578
DONE

6.12 External SPI Flash Commands

Simplicity Commander supports reading, writing, and erasing data on an external SPI flash on a limited selection of boards and devi-
ces. The following configurations are currently supported:
* The integrated SPI flash on EFR32MG1x632 and EFR32MG1x732 devices

* The MX25 SPI flash on EFR32 radio boards

6.12.1 Erase External SPI Flash Command

Use this command to erase data on an external flash. By default, the erased range is read back to verify that it was actually erased.
This blank check can be disabled by including the --noverify option.

The extflash erase command always erases complete sectors. Any sector overlapping with the range provided will be erased. All
currently supported flash devices have a sector size of 4096 bytes. For example, erasing with option --range OxE00:0x1100 will effec-
tively erase the first two sectors (equivalent to --range 0x0:0x2000).

Command Line Syntax

$ commander extflash erase --range <range expression> [--noverify]

Command Line Input Example

$ commander extflash erase --range 0x1000:0x3000

Command Line Output Example

Erasing 8192 bytes from 0x00001000 on external flash.
Resetting target...

Uploading flashloader...

Erasing external flash...

Verifying written data...

Waiting for flashloader to become ready...

Reading from external flash...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 59

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.12.2 Read External SPI Flash Command
Use this command to read from external flash.

Command Line Syntax

$ commander extflash read --range <range expression>

Command Line Input Example

$ commander extflash read --range 0x0:+0x20

Command Line Output Example

Reading 32 bytes from 0x00002000 on external flash.
Resetting target...

Uploading flashloader...

Waiting for flashloader to become ready...

Reading from external flash...

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00002000: 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 OA FF FF FF
00002010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DONE

6.12.3 Write External SPI Flash Command
Use this command to write to external flash.
Any existing content in the affected flash sectors will be erased before writing.

In contrast to the flash command for internal flash, the extflash write command always flashes the raw content of the given file. If
the address option is given the value is interpreted as a hexadecimal number. If, for example, an S-record file is provided, the ASCII
content of the file is written; the S-record format is not parsed and written to the addresses specified in the file.

Command Line Syntax

$ commander extflash write <filename> --address <start address>

Command Line Input Example

$ commander extflash write myfile.txt --address 0x2000

Command Line Output Example

Flashing 13 bytes to 0x00002000 on external flash.
Resetting target...

Uploading flashloader...

Waiting for flashloader to become ready. ..

Erasing external flash...

Writing to external flash...

Verifying written data. ..

Waiting for flashloader to become ready...

Reading from external flash...

DONE

6.13 Advanced Energy Monitor Commands

Simplicity Commander supports reading and logging current measurement data from the Advanced Energy Monitor (AEM) of the adapt-
er.

silabs.com | Building a more connected world. Rev. 3.1 | 60

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.13.1 Measure Average Current in a Time Window

The aem measure command measures the average current in a time window. The --windowlength is in milliseconds (ms) and is de-
fined as the duration where current samples will be measured and averaged. The default is 100 ms if no time is given. Ongoing
measurements can be terminated by pressing CTRL+C.

Command Line Syntax

$ commander aem measure [--windowlength <time in ms>]

Command Line Input Example

$ commander aem measure --windowlength 200

Command Line Output Example

Averaged over 200 ms:
Current [mA]: 5.359
Power [mW] : 17.763
Voltage [V] : 3.314
DONE

6.13.2 Log Current Measurements as Time Series Data

The aem dump command continuously measures the current and logs the measurement data (voltage and current). If --outfile is pro-
vided, the data is logged in the specified output file, otherwise the data is streamed to the terminal window. If --duration is provided,
the logging will stop after the specified time, otherwise the logging will continue indefinitely. In both cases, the logging may be terminat-
ed at any time by pressing CTRL+C. The --noheader option can be passed to omit the column header from being included in the out-
put file. The options described here are also applicable for use with the other options related to the aem dump command, but will be
omitted in the next sections for the sake of brevity.

If the --datarate option is provided, the rate of which the current measurements are logged is set to the specified rate. This will collect
samples over a time equal to the reciprocal of the provided data rate, and average these samples before storing the data in the output
log (terminal or specified output file). The data rate must be equal to or larger than 1 Hz, and also equal to or less than the AEM sam-
pling rate of the adapter in question. If --datarate is not provided, the command will default to the AEM sampling rate of the adapter.

The output file must be of either .txt or .csv format.

Command Line Syntax

$ commander aem dump [--outfile <filename> --datarate <rate in Hz> --duration <time in s> --noheader]

Command Line Input Example

$ commander aem dump --outfile output.csv --duration 10

This command will log AEM measurements for 10 seconds and store the data in 'output.csv', including a column header.

Command Line Output Example

Logging. - .

Send CTRL+C to abort.

Measurements written to file: 10000
Measurements written to file: 20000
<shortened data for documentation>
Measurements written to file: 90000
Measurements written to file: 100000

Closed file "output.csv®,
100000 measurements written to file.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 61

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.13.3 Start Logging on Trigger Event

Trigger parameters can be set up to start logging when either the current is above a certain current threshold (in mA) or below a certain
threshold. The --triggerabove and --triggerbelow options can be included to specify the type of triggering event. Only one of these
options can be used when issuing this command.

Using the --triggertimeout option, you can specify how long the command should wait for the trigger event before timing out. Addi-
tionally, the —--pretrigger option may be included to allow for logging of the measurements in the specified time window leading up to
the trigger event. If the actual trigger event occurs before the length of the pre-trigger time has passed (after the command was execut-
ed), the actual included pre-trigger data will be the data that was collected from the execution of the command until the trigger event
has occurred.

Note: Pay attention to the units used with the following options.

Command Line Syntax

$ commander aem dump [--triggerabove <current in mA> --triggerbelow <current in mA> --triggertimeout <timeout
in s> —-pretrigger <time in ms>]

Command Line Input Example

$ commander aem dump --triggerabove 2 --triggertimeout 10 --pretrigger 250 --datarate 1000

This command logs AEM measurements at a rate of 1000 Hz to the console output (indefinitely), starting from when the measured cur-
rent is greater than 2 mA (milliampere). Data recorded up to 250 ms (milliseconds) before the actual trigger event will also be logged. If
no trigger condition is met, the command will time out after 10 seconds.

Command Line Output Example

Logging. ..

Send CTRL+C to abort.

Waiting for trigger (current above 2 mA)...
Triggered at timestamp: 155119217 [us], 3.32649 seconds after sampling started.
154869217 ,1.00552,3.30057
154870217,1.00447,3.30057
154871217,1.00568,3.30057

<shortened data for documentation>
155117217,1.0006,3.3007
155118217,1.00196,3.30029

155119217 ,4.96464,3.29997

155120217 ,4.96765,3.29997

155121217 ,4.96612,3.30016

e

Sampling was stopped by user.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 62

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.13.4 Calibrate the Advanced Energy Monitor
The Advanced Energy Monitor (AEM) can be calibrated using the aem calibrate command.

In order to retain the AEM accuracy, calibration should be performed after changes in the target voltage are applied, or if the tempera-
ture of the adapter boards changes.

Note: Target power will be turned off during AEM calibration

Command Line Syntax

$ commander aem calibrate

Command Line Input Example

$ commander aem calibrate

This command line initiates calibration of the AEM.

Command Line Output Example

Calibrating AEM (target power is off during calibration).
Successfully calibrated AEM.
DONE

6.14 Serial Wire Output Read Commands

Simplicity Commander supports reading and dumping data received over Serial Wire Output (SWO) using the swo read command.
When the command is executed, the target device is reset. The command will then read and dump SWO data until the application is
terminated by pressing Ctrl+C, or one of the conditions described below is met.

By default, the target will be reset during initialization of the SWO connection. Providing the --noreset option will prevent this.

6.14.1 Configure SWO Speed

This command sets the SWO speed frequency in Hz. The default SWO speed is 875000 Hz. The SWO speed must match the frequen-
cy used by the target application.

Command Line Syntax

$ commander swo read [--swospeed <frequency in Hz>]

Command Line Input Example

$ commander swo read --swospeed 1000000

Command Line Output Example

<data written by the target application at 1 MHz>
CTRL+C entered, terminating SWO connection...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 63

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.14.2 Read SWO Until Timeout

This command sets the number of seconds for the adapter to wait without receiving data before it times out. The default is to never time
out.

Command Line Syntax

$ commander swo read [--timeout <timeout in s>]

Command Line Input Example

$ commander swo read --timeout 1

Command Line Output Example

<data written by the target application>
Timeout: No SWO output for 1 seconds.
DONE

6.14.3 Read SWO Until a Marker Is Found
If the --endmarker option is used, the command will terminate after finding the specified string in the SWO stream.

Command Line Syntax

$ commander swo read [--endmarker <end marker>]

Command Line Input Example

$ commander swo read [--endmarker "'--finished--'""]

Command Line Output Example

<data written by the target application>
—-—Finished--

SWO connection terminated.

End marker "--finished--" found.

DONE

6.14.4 Dump Hex Encoded SWO Output

If the --hex option is used, all input and output is converted to a hexadecimal string. This is useful if the target dumps binary data. If the
--hex option is used, --endmarker must also be hex-encoded.

Command Line Syntax

$ commander swo read [--hex] [--endmarker <hex encoded end marker>]

Command Line Input Example

$ commander swo read --hex --endmarker 50415353

Command Line Output Example

0a5374617274696e€6720746573742067726F757020434d550a434d553a333836323a546573745F434d555F4275675¥363639393a50415353
SWO connection terminated.

End marker "50415353" found.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 64

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15 NVM3 Commands

The Third Generation Non-Volatile Memory (NVM3) module in the Gecko SDK provides a way to store data in non-volatile memory
(flash) on EFM32, EFR32 and SiWx91x devices. Refer to UG103.7: Non-Volatile Memory Fundamentals or AN1135: Using Third Gen-
eration Non-Volatile Memory (NVM3) Data Storage in Dynamic Multiprotocol Applications for more details on NVM3.

Simplicity Commander supports reading out the NVM3 data area from a device and parsing the NVM3 data to extract stored values.
This can be useful in a debugging scenario where you may need to find out the stored state of an application that has been running for
some time.

6.15.1 Read NVM3 Data From a Device

This command searches for an NVM3 area in the device's flash and dumps the content to a file in .bin, .s37 or .hex format.

The optional --range parameter can be used to specify the memory range where Simplicity Commander should search for NVM3 data.
If no range is given, the entire flash is searched.

Command Line Syntax
$ commander nvm3 read -o <outfile> [--range <startaddress>:<endaddress>]

Command Line Input Example

$ commander nvm3 read -o my_nvm3_data.s37

Scans through the device flash and searches for a valid NVM3 area. When it is found, the NVM3 area is written to the file named
my_nvm3_data.s37.

Command Line Output Example

Reading 24576 bytes from 0x000fa000. . .
Writing to my_nvm3_data.s37...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 65

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.2 Parse NVM3 Data

This command takes an image file containing NVM3 data and parses the contents. The parsed NVM3 objects are printed to standard
out.

The optional --range parameter can be used to specify the memory range where Simplicity Commander should search for NVM3 data.
If no range is given, the entire file is searched.

The optional --key parameter can be used to specify specific NVM3 keys to look up. It can be used multiple times to look up more than
one key at a time. Objects with more than eight bytes of data will be truncated when listing all objects. Use the --key parameter to
select objects whose data should be displayed.

Command Line Syntax
$ commander nvm3 parse <file> [--range <startaddress>:<endaddress>] [--key <object key>]

Command Line Input Example

$ commander nvm3 parse my_nvm3_data.s37

Scans through the given file and searches for valid NVM3 data. When it is found, the data is parsed and printed to standard out.

Command Line Output Example

Parsing file my nvm3_data.s37...
Found NVM3 range: OxO000FAO00 - 0x00100000
All NVM3 objects:

KEY - TYPE - SI1ZE - DATA
0x00001 - Data - 4 B - 2A 00 00 00
0x00002 - Data - 16 B - 73 36 57 CA 6B CE CF E2 (+ 8 more bytes)
0x00003 - Counter - 4B -2

NVM3 erase count: 1

DONE

6.15.3 Initialize NVM3 Area in a File

The nvm3 initfile command creates a blank NVM3 area in an image file. For example, this feature is useful to create a file that the
nvm3 set command can work on to create a default set of NVM3 data that can be written during production.

The size and location of the NVM3 area must be given and must match the size and location used in the embedded application using
the NVM3 area.

Command Line Syntax

$ commander nvm3 initfile --address <location> --size <size in bytes> --device <target device part number> --
outfile <image Ffile>

Command Line Input Example

$ commander nvm3 initfile --address Oxfa000 --size O0x6000 --device EFR32MG12P233F1024 --outfile
my_nvm3_data.s37

This creates a 24 kB NVM3 area spanning the flash address range 0xfa000 - 0x100000.

Command Line Output Example

Placing NVM3 area at address 0x000fa000
Writing to my_nvm3_data.s37...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 66

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.4 Write NVM3 Data Using a Text File

The nvm3 set command takes an image file containing an NVM3 data region and sets the value of one or more NVM3 objects. The
objects may already exist, in which case the value is updated. If the object does not already exist, it is created. The definition of the data
to write can be passed either as a text file (--nvm3file) or as command line parameters (--object and --counter).

The text file passed by the --nvm3fi le option must have the following format:
» Each line defines a single object or counter.

* Empty lines are ignored.

* Lines starting with # are ignored.

Each line in the file must have the following syntax:
<key>:<type>:<data>

<key> is the NVM3 object key which is the unique identifer used by the embedded application. It has a maximum size of 20 bits (maxi-
mum value OXFFFFF).

<type> is the NVM3 object type. It can be one of two values: OBJ or CNT. OBJ indicates a plain byte array. CNT indicates an NVM3
counter type (32-bit unsigned integer).

<data> is the value the object should be set to. For counter types, the value is interpreted as an unsigned integer which can be prefixed
with Ox to indicate a hexadecimal value. Byte arrays are always parsed as hexadecimal and should not be prefixed with Ox.

Example File

0x00001 : OBJ : 01020304AABBCCDD
0x01000 : CNT : 0Ox80
0x01001 : CNT : 42

This file sets the object with ID 0x1 to be a byte array of eight bytes in length with the contents above.
The object with ID 0x1000 is a counter with value 0x80 (128). The object with ID 0x1001 is a counter with value 42.

Command Line Syntax

$ commander nvm3 set <input image file> --nvm3file <filename> --outfile <image file>

Command Line Input Example

$ commander nvm3 set my nvm3_data.s37 --nvm3file nvm3_objects.txt --outfile my modified_nvm3_data.s37

nvm3_objects.txt is parsed for NVM3 objects following the format described above. The given input image file is scanned for a valid
NVM3 region. The objects defined in the text file are written into the NVM3 region and the modified output is written to the output image
file.

Command Line Output Example

Parsing file my nvm3_data.s37...

Found NVM3 range: OxO00FAQ000 - 0x00100000
Setting NVM3 object: 0x00001 = 01020304AABBCCDD
Setting NVM3 counter: 0x01000 = 128 (0x00000080)
Setting NVM3 counter: 0x01001 = 42 (0x0000002a)
Writing to my_modified_nvm3_data.s37...

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 67

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.5 Write NVM3 Data Using CLI Options

In some cases, it may be more convenient to set the NVM3 object data directly from the command line without using a text file. In this
instance, use the command line options --object and --counter.

The two options both use the same syntax: <key>:<data>. The definitions of <key> and <data> are the same as in 6.15.4 Write NVM3
Data Using a Text File. The only difference between the two formats is that the <type> field has been removed because it is given by
the command line option name instead.

Simplicity Commander automatically finds the correct NVM3_MAX_OBJECT_SIZE based on the given size of NVM3 area.

Command Line Syntax

$ commander nvm3 set <input image file> --object <key>:<data> --counter <key>:<data> --outfile <image file>

Command Line Input Example

$ commander nvm3 set my_nvm3_data.s37 --object 0x1:01020304AABBCCDD --counter 0x1000:0x80 --counter 0x01001:42
--outfile my_modified_nvm3_data.s37

All --object and --counter parameters are parsed according to the format above. The given input image file is scanned for a valid
NVM3 region. The objects defined in the text file are written into the NVM3 region and the modified output is written to the output image
file.

Command Line Output Example

Parsing file my_nvm3_data.s37...

Setting NVM3 object: 0x00001 = 01020304AABBCCDD
Setting NVM3 counter: 0x01000 = 128 (0x00000080)
Setting NVM3 counter: 0x01001 = 42 (0x0000002a)
Writing to my_modified_nvm3_data.s37...

DONE

6.16 CTUNE Commands

Wireless Gecko (EFR32™) portfolio devices support configuring the crystal oscillator load capacitance in software. The crystal oscillator
load capacitor tuning (CTUNE) values are tuned during the production test of both Wireless Gecko-based modules and Silicon Labs
Wireless Starter Kit (WSTK) radio boards. For modules, the optimal value for each device is written to the Device Information (DI) page
in flash. For radio boards, the optimal value for each board is written to an EEPROM that is inaccessible to the software running on the
target device, but readable by Simplicity Commander. The ctune commands support reading out the stored CTUNE values from these
locations, and writing and reading the CTUNE manufacturing token.

silabs.com | Building a more connected world. Rev. 3.1 | 68

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.16.1 CTUNE Get Command

This command retrieves the CTUNE value stored in the Device Info page, the value stored in EEPROM on the board, and the value
written to the CTUNE manufacturing token. The values are displayed.

Command Line Syntax

$ commander ctune get
Command Line Input Example
$ commander ctune get

Command Line Output Example

Getting CTUNE values from the Device Info page, stored in EEPROM on the board, and the MFG token.
DI: Not set

Board: 346
Token: 346
DONE

Note: Not all devices have the CTUNE value stored in both the Device Info page and in EEPROM on the board. If this is the case, the
value is displayed as "Not set".

6.16.2 CTUNE Set Command

This command sets the CTUNE manufacturing token to the value specified by the value option.
Command Line Syntax

$ commander ctune set <value>

Command Line Input Example

$ commander ctune set --value 346

Command Line Output Example

Setting CTUNE token to 346
DONE

6.16.3 CTUNE Autoset Command

This command retrieves the CTUNE value from EEPROM on the board and sets the CTUNE manufacturing token to this value.
Command Line Syntax

$ commander ctune autoset

Command Line Input Example

$ commander ctune autoset

Command Line Output Example

Getting CTUNE value stored on the board...
Board: 346
Setting the CTUNE value...

6.17 Security Commands

silabs.com | Building a more connected world. Rev. 3.1 | 69

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.1 Get Device Status

This command prints Secure Element device information status, including:

Firmware version

Serial number

Device erase status

Secure debug unlock status
Tamper status

Secure boot status

Command Line Syntax

$ commander security status [--trustzone --verbose]

Command Line Input Example

$ commander security status

Command Line Output Example

SE Firmware version : 1.1.3

Serial number - 0000000000000000d0cT5efffe68a68b
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0x20 - OK

DONE

Debug lock indicates whether debug access is Enabled (locked) or Disabled (unlocked).

Device erase indicates whether or not it is possible to regain debug access using the device erase command. If the device erase is
enabled, this is possible. If the device is disabled, it is not possible.

Security debug unlock Enabled means that if the device is locked, debug access can be regained using the security unlock
command. If both device erase and secure debug unlock are Disabled, it is not possible to regain debug access if the device is
locked.

Tamper status indicates whether or not a tamper event is detected by the device. OK means no tamper event is detected.

Secure boot Enabled means that all images running on the device must be signed with the private sign key corresponding to the
public sign key written to the device.Secure boot Disabled means that images do not have to be signed with the sign key.

Boot status shows if secure boot failed or if the secure boot is OK.

Command Line Input Example

$ commander security status --trustzone

Show the TrustZone status of the device.

Command Line Output Example

SE Firmware version :
Serial number :
Debug lock : Disabled
Device erase :
Secure debug unlock :

1.1.3
0000000000000000d0cT5efffe68a68b

Enabled
Disabled

Debug lock state: Unlocked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked
Secure, invasive debug lock (SPIDLOCK) : Unlocked
Secure, non-invasive debug lock (SPNIDLOCK) : Unlocked

silabs.com | Building a more connected world. Rev. 3.1 | 70

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Non-secure, invasive debug lock state (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked
Secure, invasive debug lock state (SPIDLOCK) : Unlocked
Secure, non-invasive debug lock state (SPNIDLOCK) : Unlocked
Tamper status : OK

Secure boot : Disabled

Boot status : 0x20 - OK

DONE

Debug lock state indicates whether the debug port is locked or unlocked.

The TrustZone debug lock configuration consists of the four modes SPNIDLOCK, SPIDLOCK, NIDLOCK and DBGLOCK. The top configura-
tions specifies which mode has been locked by the security lock --trustzone command. The bottom configuration specifies the
actual state of the mode, whether or not it has been unlocked.

Command Line Input Example

$ commander security status --verbose

Show verbose output of the security status.

Command Line Output Example

SE Firmware version : 1.1.3

Serial number - 0000000000000000d0cT5efffe68a68b
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status - OK

Secure boot : Disabled

Boot status : 0x20 - OK
Verbose output: 00000000 00000000 00000000 FFFFFFFF 00000020 03020200 00000000 00000002 FFFFFFFF
DONE

Verbose output is the entire output from the Secure Element of the device.

6.17.2 Generate Key Pair

This command has been deprecated. For more information on how to generate keys, see 6.18.2 Generating a Signing Key and
6.18.1 Key Generation.

silabs.com | Building a more connected world. Rev. 3.1 | 71

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.3 Write Public Key to Device
IMPORTANT: This is a one-time command. It cannot be run more than once per device.

This one-time command permanently locks the device to this key pair. There are two different public keys that can be written to the
device.

« Command key - the corresponding private key is used to create certificates to perform secure debug unlock.
+ Sign key - the corresponding private key must sign all code that is to run on the device when Secure Boot is enabled.

When Secure Debug Unlock is enabled, a locked device may temporarily unlock debug access by creating a certificate signed by the
private command key.

When Secure Boot is enabled, all code that runs on the device must be signed by the private sign key.

Command Line Syntax

$ commander security writekey [--command <public key PEM file>] [--sign <public key PEM file>]

Command Line Input Example

$ commander security writekey --command command_public_key.pem

Command Line Output Example

Device has serial number 000000000000000014b457fffed50c35

Please look through any warnings before proceeding.
THIS 1S A ONE-TIME command, all code to be run on the device must be signed by this key.
Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
DONE

6.17.4 Read Public Key from Device

This command reads out a public key from the device. There are two different public keys that can be stored on the device using the
commander security writekey command.

« Command key — the corresponding private key is used to create certificates to perform secure debug unlock or disable tamper.
» Sign key — the corresponding private key must sign all code that is to run on the device when Secure Boot is enabled.

By providing an output file, the key will be written to the file. Otherwise, the key will be printed to the Command Line Interface (CLI) as a
byte array.

If the optional --nostore option is not used, the key will also be stored in the Security Store.
Command Line Syntax
$ commander security readkey [--command] [--sign] [--outfile <filename>] [--nostore]

Command Line Input Example

$ commander readkey --command --outfile command_public_key.pem

Command Line Output Example

Writing public key file in PEM format to key.pem...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 72

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.5 Configure Lock Options

The security lockconfig command enables or disables secure debug unlock. When secure debug unlock is enabled, a locked de-
vice may be temporarily unlocked by running a commander security unlock command. If secure debug unlock is disabled, the only
way to unlock a locked device is to run a commander security erasedevice command, given that device erase has not been disa-
bled. If both device erase and secure debug unlock are disabled, there is no way to unlock debug access to a locked device.

Note: Secure debug unlock must be enabled before the device is locked.

Command Line Syntax

$ commander security lockconfig --secure-debug-unlock <enable/disable>

Command Line Input Example

$ commander security lockconfig --secure-debug-unlock enable

Command Line Output Example

Secure debug unlock was enabled.
DONE

6.17.6 Lock Debug Access

The lock command locks the debug interface on the device. If secure debug unlock has been enabled, the device may be unlocked
using the unlock command. If device erase has not been disabled, the debug access may also be unlocked using the commander
security erasedevice command. However, this also triggers a mass erase on the device.

The --trustzone option may be used to lock debug access to specific TrustZone modes. The bitmask to set TrustZone debug lock is
defined as <SPNIDLOCK, SPIDLOCK, NIDLOCK, DBGLOCK>. If the bit is set to 1, debug access to the corresponding TrustZone mode
will be locked. Set the bit to 0 to keep it open. By default all modes are open.

Command Line Syntax

$ commander security lock [--trustzone <xxxx>]
Command Line Input Example

$ commander security lock

Command Line Output Example

Device is now locked.
DONE

Command Line Input Example

$ commander security lock --trustzone 0011

Debug access to TrustZone modes DBGLOCK and NIDLOCK are locked.

Command Line Output Example

Writing debug restriction bits:

DBGLOCK: 1
NIDLOCK: 1
SPIDLOCK: O

SPNIDLOCK: O
Device is now locked.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 73

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.7 Secure Debug Unlock

The security unlock command opens debug access on a locked device temporarily without erasing the flash content. When running the
commander security unlock command, Simplicity Commander will use all available files in the Security Store and from command line
options in an attempt to unlock debug access. If anything is missing, you will be asked to provide the file as an option to the command.
All files generated or given as command line options are stored in the Security Store, unless the --nostore option is used.

For more information about Secure Debug, see AN1190: EFR32xG21 Secure Debug.

There are several different ways to unlock the debug access, as illustrated in the following figure. The blue fields are actions and the
red fields are artifacts.

silabs.com | Building a more connected world. Rev. 3.1 | 74

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

unlock command|
executed

‘unlock payload)
exists?
Y n

certificate exists? |
A

~ certificate is | generate
signed? ‘ certificate keys
Y n
) Y
certificate 5ignature| generate
exists? certificate
Y n
R
‘command key
exists?
| P
Y
sign certificate with]
command key
L I
- ‘ ~
‘command signature|
exists?
e

| R
| private certificate|
key exists?
¥l (n

‘-’generatew
command

1

5|gn command mth}

\ certlﬂcate key

(unlock error |

Figure 6.1. Unlock Flow

Command Line Syntax

$ commander security unlock [--cert <signed access certificate> --cert-signature <signature> --command-
signature <signature> --cert-privkey <keyfile> --cert-pubkey <keyfile> --command-key <keyfile> --nostore]

Command Line Input Example

$ commander security unlock --command-key command_key.pem

silabs.com | Building a more connected world. Rev. 3.1 | 75

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

This example uses and generates a certificate and command signature on-the-fly using the provided command key to sign the certifi-
cate. All the generated files and the command key are stored in the Security Store.

Command Line Output Example

Command public key stored in:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_pubkey . pem

Command private key stored in:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_key . pem

Authorization file written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Generating ECC P256 key pair...

Cert public key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Cert private key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Command key matches public command key found on device. Signing certificate...

Certificate was signed with key:

test-cases/common/security_testfiles/command_key.pem

Successfully stored certificate

Certificate written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Created unsigned unlock command

Signed unlock command using
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Command Line Input Example

$ commander security unlock --cert access_certificate.bin --cert-privkey cert_key.pem

This example unlocks the device with a signed access certificate and the private certificate key corresponding to the public key in the
access certificate. The certificate and key are stored in the Security Store.

Command Line Output Example

/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Cert key written to Security Store:
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Created unsigned unlock command

Signed unlock command using
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Command Line Input Example

$ commander security unlock --cert-signature cert_signature.bin --command-signature command_signature.bin

This example uses externally generated signatures for both the access certificate and command file. The access certificate signature is
appended to the certificate and stored in the Security Store. The command signature is validated against the public key in the certifi-
cate.

Command Line Output Example

Using certificate from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/

silabs.com | Building a more connected world. Rev. 3.1 | 76

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

access_certificate.bin

Certificate in Security Store is not signed.

Moved existing file to:
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
archive/access_certificate.bin

Signed certificate written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Command signature is valid

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

Command Line Input Example

$ commander security unlock

When the device has been unlocked with the current challenge, the unlock payload is stored in the Security Store. The next time the
unlock command is run, the device is unlocked directly with the unlock payload.

Command Line Output Example

Unlocking with unlock payload:
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
challenge_4329288395adfc4eea436e5d64dd296b/unlock_payload_0000000000111110.bin

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 77

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.8 Disable Tamper

Secure Vault products are capable of detecting certain types of tamper events and responding to mitigate the attack. This provides an
extra layer of protection against attacks that rely on physically tampering with the product.

Before this command can be executed, the tamper sources must be configured in the One-Time-Programmable (OTP) settings of the
devices. See 6.17.16 Write User Configuration for more information about how this is done.

The process of disabling tamper follows the same flow as the security unlock command. For more information about the flow, see
6.17.7 Secure Debug Unlock.

A certificate and a signed challenge are required to disable tamper. The certificate—including tamper authorizations—is generated and
signed with a command key. The certificate contains a public key and the corresponding private key must be used to sign a challenge
from the device to disable tamper sources. The --disable-param option determines which tamper sources to disable. If this option is
not provided, Simplicity Commander will extract the tamper authorizations from the certificate and disable everything allowed by the
certificate. If the certificate is not available, all sources will be disabled.

The tamper sources are disabled until the next Power On Reset.

Command Line Syntax

$ commander security disabletamper [--disable-param <disable-mask> --cert <signed access certificate> --cert-
signature <signature> --commandsignature <signature> --cert-privkey <keyfile> --cert-pubkey <keyfile> --
command-key <keyfile> --nostore]

Command Line Input Example

$ commander security disabletamper --cert access_certificate.bin --cert-privkey cert_key.pem

Command Line Output Example

Using tamper parameters from certificate in Security Store: OxFFFfffb6
Certificate written to Security Store:
/Users/matundal/Library/Preferences/SiliconLabs/commander/SecurityStore/
device_0000000000000000000d6FfFffead3617/access_certificate.bin

Cert key written to Security Store:
/Users/matundal/Library/Preferences/SiliconlLabs/commander/SecurityStore/
device_0000000000000000000d6ffFffead3617/cert_pubkey.pem

Using tamper parameters from certificate in Security Store: OxFFFfffb6
Created unsigned disable tamper command

Signed disable tamper command using
/Users/matundal/Library/Preferences/SiliconLabs/commander/SecurityStore/
device_0000000000000000000d6fFfFfead3617/cert_key.pem

Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 78

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.9 Device Erase using Secure Element
This command performs a device mass erase and resets the debug configuration to its initial unlocked state.

The complete flash and RAM of the system is cleared, excluding the user data page and one-time programmable commissioning infor-
mation in the Secure Element.

If device erase has been disabled, this command is not available.

Note: After a device erase, the DCI interface is unavailable until the device has been reset
Command Line Syntax

$ commander security erasedevice

Command Line Input Example

$ commander security erasedevice

Command Line Output Example

Successfully erased device
DONE

6.17.10 Disable Device Erase

IMPORTANT: This is a one-time command. It cannot be run more than once.

This command permanently disables device erase. When device erase is disabled, the commander security erasedevice command
is no longer available. This means that if debug access is locked, debug access can only be opened if secure debug unlock has been
enabled before the device was locked. If not, there is no way to regain debug access. This command can be run after the device has
been locked.

Confirmation is required from the user to execute this command, except if the --noprompt option is used.
Command Line Syntax
$ commander security disabledeviceerase [--noprompt]

Command Line Input Example

$ commander security disabledeviceerase

Command Line Output Example

THIS 1S A ONE-TIME command which Permanently disables device erase.
IT secure debug lock has not been set, there is no way to regain debug access to this device.
Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
Disabled device erase successfully
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 79

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.11 Roll Challenge

This command makes the Secure Element roll or update its challenge data. The challenge is random data that must be read from the
device before an unlock command can be executed. Rolling the challenge renders existing command signatures invalid. For more infor-
mation, see 5.3 Challenge and Command Signing.

The challenge cannot be rolled before it has been used at least once—that is, by running the security unlock command or the disable
tamper command.

$ commander security rollchallenge
Command Line Input Example
$ commander security rollchallenge

Command Line Output Example

Challenge was rolled successfully.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 80

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.12 Generate Example Authorization File

This command generates a default authorization file to be used in the certificate. The authorization file will be stored in Security Store
unless the --nostore option is used.

Default Authorization File for Devices without Secure Vault

""debug_authorizations":{
"ENABLE_DEBUG_PORT": true
}

}

Default Authorization File for Devices with Secure Vault

""debug_authorizations":{
""ENABLE_DEBUG_PORT": true
by

"tamper_authorizations':{
"FILTER_COUNTER": 1,
"WATCHDOG™": 1,
""SE_RAM_CRC": 1,
""SE_HARDFAULT": 1,
""SOFTWARE_ASSERTION": 1,
""SE_CODE_AUTH": 1,
""USER_CODE_AUTH": 1,
“"MAILBOX_AUTH": 1,
"“DCI_AUTH": 1,
"OTP_READ": 1,
""AUTO_CODE_AUTH": 1,
"SELF_TEST": 1,
"TRNG_MONITOR™: 1,
"PRSO™": 1,

"PRS1":
"PRS2":
""PRS3":
"PRS4™:
""PRS5":
"PRS6": 1,

"PRS7": 1,
""DECOUPLE_BOD™": 1,
“"TEMP_SENSOR": 1,
"“VGLITCH_FALLING™: 1,
"VGLITCH_RISING™: 1,
"SECURE_LOCK™: 1,
""SE_DEBUG™: 1,
“DGLITCH": 1,
"SE_ICACHE": 1

RPRRRPRR

}

Debug Authorization

Enable Debug Port must be set to frue in order to perform a secure debug unlock. For more information about secure debug unlock,
see 6.17.7 Secure Debug Unlock.

Tamper Authorizations

The Tamper Authorizations indicate which sources may be disabled. By default all sources may be disabled. For more information
about disabling tamper sources, see 6.17.8 Disable Tamper.

Command Line Syntax

$ commander security genauth [-o <filename>] [--nostore]

Command Line Input Example

$ commander security genauth -o certificate _authorization. json --nostore

silabs.com | Building a more connected world. Rev. 3.1 | 81

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Command Line Output Example

Authorization file stored in:
certificate_authorization.json
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 82

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.13 Generate Access Certificate

Access certificates are used to unlock debug access or disable tamper on the device. For more information, see 6.17.7 Secure Debug
Unlock or Disable Tamper. The certificate and the keys provided to or generated by Simplicity Commander are stored in Security Store
unless the --nostore option is used. If --cert-pubkey or --authorization are not used as options on the command line, Simplicity
Commander checks if the files are stored in Security Store. If the files are not in Security Store, Simplicity Commander generates a
default authorization file that may be edited. If the file is edited, a new certificate must be generated. Simplicity Commander will also
generate a pair of certificate keys if the --cert-pubkey option is not used. If the certificate keys are generated, the --nostore option
cannot be used. If the --command-key option is not used on the command line and not located in Security Store, the --extsign option
should be used for Simplicity Commander to generate an unsigned certificate. To use the certificate to unlock debug access, a certifi-
cate signature must be generated and provided. If the device for which the certificate is made is connected, Simplicity Commander
retrieves the device serial number directly.

Note: Before Simplicity Commander version 1.11.2 unsigned certificates were created with all zeros in replace of the signature. This
was fixed in version 1.11.2 making it compatible with external signing using tools such as OpenSSL.

Device Serial Number

Authorization

Certificate Public Key

Access Certificate Signature
Signed by Command private key

Figure 6.2. Access Certificate
Command Line Syntax

$ commander security gencert [--cert-pubkey <public key file>] [--authorization <auth-file>] [--command-key
<private key file>][--extsign][--devserialno <serial number>] [-o <filename>] [--nostore]

Command Line Input Example

$ commander security gencert --extsign

This example generates an unsigned certificate, as the command private key is not provided as a command option, nor is it located in
Security Store. The public certificate key is not provided either, so Simplicity commander generates a pair of certificate keys and stores
them in Security Store. A default authorization file is also generated and stored in Security Store.

Command Line Output Example

Authorization file written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Generating ECC P256 key pair...

Cert public key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Cert private key stored at:
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Successfully stored certificate

Created an unsigned certificate in Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.extsign

DONE

Command Line Input Example

silabs.com | Building a more connected world. Rev. 3.1 | 83

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

$ commander security gencert --cert-pubkey cert_pubkey.pem --authorization certificate_authorizations.json --
command-key command_key.pem -o access_certificate.bin --nostore

In this example, all files needed to generate the certificate are provided as command line options. The device serial number is taken
directly from the connected device. The certificate is signed with the private command key, and is ready to be used to unlock debug
access.

Command Line Output Example

Command key matches public command key found on device. Signing certificate...
Certificate was signed with key:

command_key . pem

DONE

Command Line Input Example

$ commander security gencert
This example uses files already located in Security Store to generate a signed certificate. The certificate is stored in Security Store.

Command Line Output Example

Using authorizations from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Using public key from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Found command key in Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_key . pem

Certificate was signed with key:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_key . pem

DONE

6.17.14 Generate Unsigned Command File

The commander security gencommand command retrieves the security challenge from the device and stores it in a file with other data
as described in Figure 5.2 Unlock Command Signature on page 22. The signature of this file using the private certificate key can be
used as part of the payload to perform a secure debug unlock.

Unless the --nostore option is used, the unsigned command file will be stored in the Security Store.

If the user has the private certificate key, Simplicity Commander automatically generates the command file and signature using the
commander security unlock command. If the command file is signed by an external process—for example, an HSM—the command
signature needs to be passed as a command line option when executing the commander security unlock command.

Command Line Syntax
$ commander security gencommand --action debug_unlock [-o <output file>] [--nostore]

Command Line Input Example
$ commander security gencommand --action debug-unlock -o unlock _command_to_be_signed.bin --nostore
Command Line Output Example

Unsigned command file written to:
unlock_command_to_be_signed.bin
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 84

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.15 Generate Example Configuration File

This command generates a default configuration file to be used with the security_writeconfig command. The file is stored in Securi-
ty Store unless the --nostore option is used.

Default Configuration File for Devices without Secure Vault

{
“mcu_fFflags": {
""SECURE_BOOT_ENABLE": true,
“'SECURE_BOOT_VERIFY_CERTIFICATE": false,
""SECURE_BOOT_ANTI_ROLLBACK™": true,
“'SECURE_BOOT_PAGE_LOCK_NARROW": false,
""SECURE_BOOT_PAGE_LOCK_FULL™": true
}
¥

Default Configuration File for Devices with Secure Vault

{
"mcu_fFflags": {
""SECURE_BOOT_ENABLE™": true,
"'SECURE_BOOT_VERIFY_CERTIFICATE": false,
""SECURE_BOOT_ANTI_ROLLBACK": true,
"'SECURE_BOOT_PAGE_LOCK_NARROW": false,
""SECURE_BOOT_PAGE_LOCK_FULL": true

}

amper_levels™: {
"FILTER_COUNTER": O,
"WATCHDOG": 4,
""SE_RAM_CRC": 4,
""SE_HARDFAULT": 4,
""SOFTWARE_ASSERTION": 4,
"'SE_CODE_AUTH": 4,
""USER_CODE_AUTH": 4,
"“"MAILBOX_AUTH": O,
"DCI_AUTH": 0,
"OTP_READ": O,
""AUTO_CODE_AUTH": O,
"SELF_TEST": 4,
"TRNG_MONITOR": O,
"PRSO": O,
“"PRS1":
""PRS2":
""PRS3":
"PRS4":
""PRS5":
""PRS6":
"PRS7": O,
""DECOUPLE_BOD™": 4,
“"TEMP_SENSOR": 1,
"VGLITCH_FALLING": O,
"VGLITCH_RISING": O,
""SECURE_LOCK™: 4,
"'SE_DEBUG™: 0,
"“DGLITCH": O,
""SE_ICACHE": 4

[eNeNeoNoNoNoNe)

3.

“tamper_Ffilter" : {
"“FILTER_PERIOD": O,
"FILTER_THRESHOLD": O,
""RESET_THRESHOLD"™: O

}

amper_flags™: {
"DGLITCH_ALWAYS_ON": false

}
}

MCU settings
+ Secure Boot Enable — Enables Secure Boot on the device if set. Requires all applications running on the device to be signed.

silabs.com | Building a more connected world. Rev. 3.1 | 85

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Secure Boot Verify Certificate — Applications running on the device must be signed using an intermediary certificate if this option is
set. It is still possible to use certificates for signing even if this option is not set. For more information, see 6.5.9 Signing an Applica-
tion for Secure Boot using an Intermediary Certificate.

Secure Boot Anti Rollback — If set, application images with a lower version than the image currently stored in flash will not run on
the device.

Secure Boot Page Lock Narrow — Flash pages validated by the Secure Boot process are locked down to prevent re-flashing by
means other than through Root Code. Pages from 0 through the page where the Secure Boot signature of the application is located
are locked down, not including the last page if the signature is not on a page boundary.

Secure Boot Page Lock Full — Flash pages validated by the Secure Boot process are locked down to prevent re-flashing by means
other than through Root Code. Pages from 0 through the page where the Secure Boot signature of the application is located are
locked down, including the last page if the signature is not on a page boundary.

Tamper Levels

The different tamper sources are listed under tamper levels. The default configuration is an absolute minimum. The Root Code will nev-
er set tamper levels to a lower setting than the default configuration. The tamper levels are listed in the following table.

Table 6.1. Tamper Levels

Tamper Level | Description

1

No action taken

2 Generate SE interrupt
3 Increment filter counter
4 System Reset

5 Reserved

6 Reserved

7

Erase OTP (Makes the device unrecoverable; it will neve boot again.)

Command Line Syntax

$ commander security genconfig [-o <filename>] [--nostore]

Command Line Input Example

$ commander security genconfig -o user_configuration.json --nostore

Command Line Output Example

Configuration file stored in:
user_configuration. json
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 86

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.16 Write User Configuration
IMPORTANT: This is a one-time command. It cannot be run more than once.
The commander security writeconfig command sets the configurations determined in the configuration file in the Root Code.

Secure Boot is enabled through this command. Before Secure Boot is enabled, you must write the public sign key to the device. For
more information on writing keys to the device, see 6.17.3 Write Public Key to Device. In addition, a configuration file must be generat-
ed and the Secure Boot Enabled flag must be set to true. If no configuration file is provided, a default configuration will be generated.

In Simplicity Commander version 1.9, tamper configuration is supported on devices with Secure Vault. The tamper configuration deter-
mines the response from the Secure Element in the occurrence of a tamper event. For more information about the configuration file and
tamper configuration, see 6.17.15 Generate Example Configuration File.

For more information about Secure Boot, see AN1218: Series 2 Secure Boot with RTSL.

For more information about tamper events, see 6.17.8 Disable Tamper.

Command Line Syntax

$ commander security writeconfig [--configfile <config file>] [--nostore] [--nopromt]

Command Line Input Example

$ commander security writeconfig --configfile user_configuration.json

Command Line Output Example

THIS 1S A ONE-TIME configuration: Please inspect file before confirming:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
user_configuration. json

Type "continue” and hit enter to proceed or Ctrl-C to abort:

continue
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 87

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.17 Read User Configuration

This command returns the One-Time Programmable (OTP) setting from the device. If the device has not been configured with the
6.17.16 Write User Configuration command, no OTP settings are available to read.

Command Line Syntax

$ commander security readconfig

Command Line Input Example

$ commander security readconfig

Command Line Output Example

MCU Flags

Secure Boot : Enabled
Secure Boot Verify Certificate : Disabled
Secure Boot Anti Rollback : Enabled
Secure Boot Page Lock Narrow : Disabled
Secure Boot Page Lock Full : Enabled

Tamper Levels
FILTER_COUNTER
WATCHDOG
SE_RAM_CRC
SE_HARDFAULT
SOFTWARE_ASSERT ION
SE_CODE_AUTH
USER_CODE_AUTH
MAITLBOX_AUTH
DCI1_AUTH
OTP_READ
AUTO_CODE_AUTH
SELF_TEST
TRNG_MONITOR
PRSO

PRS1

PRS2

PRS3

PRS4

PRS5

PRS6

PRS7
DECOUPLE_BOD
TEMP_SENSOR
VGLITCH_FALLING
VGLITCH_RISING
SECURE_LOCK
SE_DEBUG
DGLITCH
SE_1CACHE

PrOOPMOORPRDMNOOOOOOOOORMODOOOMMMAMDMDMIMO

Tamper Filter
Filter Period
Filter Treshold
Reset Treshold

o oo

Tamper Flags
Digital Glitch Detector Always On: Disabled

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 88

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.18 Get Security Store Path

Get the path to the security store. If a device is connected or the --deviceserialno option is provided, the device specific path is re-
turned. Otherwise, the path to Security Store is returned.

Command Line Syntax
$ commander security getpath [--deviceserialno <deviceserialno>]

Command Line Input Example

$ commander security getpath

Command Line Output Example

/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b
DONE

6.17.19 Write AES Decryption Key
Important: This is a one-time command. It cannot be run more than once per device.

The symmetric 128-bit AES key is used to decrypt GBL files. This key is also known as the MFG_BOOTLOAD_AES_KEY. All encrypt-
ed images on this device must be encrypted with the same AES key.

Command Line Syntax

$ commander security writekey --decrypt <filename>

Command Line Input Example

$ commander security writekey --decrypt key.txt

Command Line Output Example

Device has serial number 000000000000000014b457fffed50c35

Please look through any warnings before proceeding.
THIS 1S A ONE-TIME command, all code to be run on the device must be signed by this key.
Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 89

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.20 Read Device Certificates

This command reads out a X509 certificate from the device. The available certificates are:
* batch - same for each manufacturing batch

» SE - unique per device

* MCU - unique per device

The certificates form a root-of-trust certificate chain up to the Silicon Labs Root Certificate issued by Silicon Labs. The SE and
MCU Certificates are issued by a Batch Certificate. The Batch Certificate is issued by a Factory Certificate, and the
Factory Certificate is issued by the Silicon Labs Root Certificate.

Key information about the certificate is printed to the command line if no outfile is given. The certificate may be read out in entirety by
providing the outfi le argument. The available encodings are pem and der.

Command Line Syntax

$ commander security readcert <cert type> [--outfile <filename>]
Command Line Input Example

$ commander security readcert batch

Command Line Output Example

Version : 3

Subject : CN=Batch 1001317 O=Silicon Labs Inc. C=US
Issuer : CN=Factory O=Silicon Labs Inc. C=US

Valid From : October 17 2019

Valid To : September 16 2118

Signature algorithm: SHA256

Public Key Type : ECDSA

Public key :
b0c113190bba3dlee507d954e878957ad5cc8903ec7785525b8c0b2¢c2185514cd1421498487c5ea55480192446818534e027e6496Fchdecef3659cc
DONE

Command Line Input Example

$ commander security readcert se --outfile se_cert.pem

Command Line Output Example

Writing certificate to se_cert.pem...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 90

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.21 Vault Device Attestation

Attestation of a device is used to cryptographically prove to a remote party that they are the system they say they are, and ensure that
the device they are talking to is the same device as the one that got produced in the factory.

The attestation process starts with authenticating the certificate chain up to the Silicon Labs Root certificate. For more information on
certificates, see 6.17.20 Read Device Certificates.

The attestation token is printed to the command line. The token consists of multiple claims as listed in the following table.

Claim ID Claim friendly name Present in token Content

-75000 ARM PSA Profile ID Always ASCII 'SILABS_1'

-75008 ARM PSA nonce Always Copy of the nonce supplied as input to the token
generation command.

-75009 ARM PSA/IETF EAT UEID Always The device's EUI-64 pre-pended with 0x06 and
zeroes.

-76000 SE status Always Current SE status

-76001 OTP configuration Always when provisioned User configuration

-76002 MCU Sign key Always when provisioned Public sign key

-76003 MCU Command key Always when provisioned Public command key

-76004 Current applied tamper settings | Always Currently applied tamper level per tamper signal
(one nibble per tamper signal).

Finally, the signature of the attestation token is verified as shown in the following examples.

$ commander security attestation

Command Line Input Example

$ commander security attestation

Command Line Output Example

Certificate chain successfully validated up to Silicon Labs device root certificate.

-75008 ARM PSA nonce
-75000 ARM PSA Profile ID SILABS_1

-75009 ARM PSA/IETF EAT UEID 0614b457fFFfe0f7789

-76000 SE status :
000000010000000000000000000000000000002000010202 FFFFFFFFO0000002FFFFFFTT

-76002 MCU sign key
fb2470314cO710f5a72e89a30d2af607770187568f800ffa7fc6516f61e0dc258a8606fe664a097eb94d3ea29e1b87262babdb969842da31512bdcA
-76003 MCU command key
a21809615321567527e94ac1f01230604e231f1eabe699fb1d751af3e28d00feaa3dd82354Oa2452baa40dfb3475d3bb786b41e7880881b5a5427eA
-76004 Current applied tamper settings : 05044440040004040000000014000440

1799c9296ac44a854b74fe50dc6f1546a5clel7de73584afcc478739161db7d0

Successfully validated signature of attestation token.

silabs.com | Building a more connected world. Rev. 3.1 | 91

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18 Util Commands

6.18.1 Key Generation

Generates a keyfile to be used for encryption and decryption and outputs the keyfile to the specified filename.
Command Line Syntax

$ commander util genkey --type aes-ccm --outfile <filename>

Command Line Input Example

$ commander util genkey --type aes-ccm --outfile key.txt

Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

6.18.2 Generating a Signing Key

Creates an EDCSA-P256 key pair and outputs the result to the specified private and public key files. For more information, see UG266:
Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Bootloader User's Guide for
GSDK 4.0 and Higher.

Command Line Syntax
$ commander util genkey --type ecc-p256 --privkey <filename> --pubkey <filename> [--tokenfile <filename>]

Command Line Input Example

$ commander util genkey --type ecc-p256 --privkey signing_key.pem --pubkey signing_pubkey.pem

Command Line Output Example

Generating ECC P256 key pair...

Writing private key file in PEM format to signing_key.pem

Writing public key file in PEM format to signing_pubkey.pem

DONE

6.18.3 Key to Token

Creates a token text file containing an Elliptic Curve Cryptography (ECC) public key suitable for flashing to a device. For more informa-

tion, see UG266: Silicon Labs Gecko Bootloader User's Guide for GSDK 3.x and Lower or UG489: Silicon Labs Gecko Bootloader Us-
er's Guide for GSDK 4.0 and Higher.

Command Line Syntax

$ commander util keytotoken <input file> --outfile <filename>
Command Line Input Example
$ commander util keytotoken my_pubkey.pem --outfile keytokens.txt

Command Line Output Example

Writing EC tokens to keytokens.txt...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 92

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.4 Key Config Generation

Generates a key configuration file to the specified file name. This command is only available for SiWx91x devices, so the device options
is required. The output file is used as input to the 6.25.11 Provision Security Keys to the Device and 6.25.12 Provision OTP Security
Keys to the Device command, among others. The file contains the following keys:

- ATTESTATION_PRIVATE_KEY
- ATTESTATION_PUBLIC_KEY
- M4_OTA_KEY
 M4_PRIVATE_KEY
 M4_PUBLIC_KEY

.« OTA_KEY
 TA_PRIVATE_KEY

« TA_PUBLIC_KEY

- OTP_AES_KEY

. OTP_PRIVATE_KEY

+ OTP_PUBLIC_KEY

Command Line Syntax

$ commander util genkeyconfig --outfile <filename> --device <device>

Command Line Input Example

$ commander util genkeyconfig --outfile keys.json --device Si917

This example generates a file, keys. json, containing the key configuration for a Si917 device.

Command Line Output Example

Generating symmetric key...

Generating symmetric key...

Generating ECC P256 key pair...
Generating ECC P256 key pair...
Generating ECC P256 key pair...

Key configuration written to keys.json
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 93

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.5 Generate Certificate

The process of signing files can be done using an intermediate certificate. These certificates can be generated with the util gencert
command. There are currently two available certificate types: GBL certificates and Secure Boot certificates. If rollback prevention is en-
abled, the device will not boot if it has seen a certificate with a higher version number. This is set by the --cert-version option. The
private key corresponding to the --cert-pubkey is used to sign the image. The certificate may either be signed directly by providing a
signing key with the --siign option or unsigned by providing the --extsign option.

Command Line Syntax

$ commander util gencert --cert-type <cert type> --cert-version <version> --cert-pubkey <key file> [--sign
<key file>|--extsign] --outfile <filename>

Command Line Input Example

$ commander util gencert --cert-type secureboot --cert-version 1 --cert-pubkey cert_pubkey.pem --sign
signing_key.pem --outfile secureboot cert.bin

In this example the signing key is provided and the certificate is signed directly.

Command Line Output Example

Successfully signed certificate
DONE

Command Line Input Example

$ commander util gencert --cert-type gbl --cert-version 1 --cert-pubkey cert_pubkey.pem --extsign --outfile
gbl_cert.bin

In this example an unsigned certificate is created. The signature for the certificate can be created, for example, by a Hardware Security
Module (HSM). The certificate can be signed by passing the unsigned certificate and the HSM generated signature to the util
signcert command.

Command Line Output Example

DONE

6.18.6 Sign Certificate

Sign a certificate with an externally created signature. You can use the optional --verify option to verify the signature by providing the
public key corresponding to the private key used to create the signature.

Command Line Syntax

$ commander util signcert <cert Tfilename> --cert-type <type> --signature <signature> [--verify <public key
file>] --outfile <filename>

Command Line Input Example

$ commander util signcert gbl_cert.bin.extsign --cert-type gbl --signature gbl_signature.bin --verify
signing_pubkey.pem --outfile signed_cert.bin

Command Line Output Example

Successfully verified signature
Successfully signed certificate
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 94

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.7 Verify Signature

When secure boot is enabled, all code running on the device must be signed. This command can be used as a check to verify that the
file was correctly signed, which may help in debugging in case secure boot fails, or as a verification before flashing the image. If the file
is signed using an intermediate certificate, the certificate key is used to check the signature of the file. The key given by the --verify
option is used to verify the signature of the certificate.

Command Line Syntax

$ commander util verifysign <input file> --verify <public key file>

Command Line Input Example

$ commander util verifysign my_application.bin --verify signing_pubkey.pem

Command Line Output Example

Parsing file my_application.bin...

Found application properties at 0x00000e78

Found certificate in image at location 0x0000b3a4

Successfully verified certificate signature with verification key.
Using certificate key to verify application signature.

Found signature at 0x0000b42c

Successfully verified application signature.

DONE

6.18.8 Application Information

Get all available information about an application by parsing the ApplicationProperties_t struct in the image. If the file does not
have application properties, no information can be extracted from the file.

Command Line Syntax

$ commander util appinfo <filename>

Command Line Input Example

$ commander util appinfo my_application.bin

Command Line Output Example

Parsing file my application.bin...

Found application properties in image.

Application protperties info:

Signature location = 0x0000b42c
Signature type : ECDSA-P256

Long token section address : Not set (0x00000000)
Application data info:

ITf rollback prevention is enabled, the device will not boot if the device has seen an application with a
higher version number.

App type : The application is an MCU application

App version = 0x00000000

Product 1D : 0x534551555047524144455¥4150500000

Application certificate info:

IT rollback prevention is enabled, the device will not boot if the device has seen a certificate with a higher

version number.

Certificate located at 0x0000b3a4

Certificate version 0x00000001

Certificate key :
0x249919c28b28156119d2e03379b968c8a931aa9b195258e2741da28b686983dd71d0140e9a7b0d7e39de431592163b8aa38d4e0871F5d2d88b57¢
Certificate signature :
0x013f2adc310f10f1426db74b503F3612a46ab85c7ce86c967eb965b10F7d24267101192513d9481c49c0eb0b61c1F73392cc6F6d1cd1209a9d58¢
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 95

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.9 Print Section Header Information from an ELF File

Parse and print the section header information from an Executable and Linkable Format (ELF) file.

Command Line Syntax

$ commander util elfinfo <filename>

Command Line Input Example

$ commander util elfinfo my_bootloader.out

Displays section header information of ELF file my_bootloader.out.

Command Line Output Example

5
&
CONOUAWNPE X

NNNNRPRPRERERER R
WNRPOOONOUNWNERO

DONE

Name

-shstrtab
-strtab

-symtab

HEADERS

APP ro
SIMEE&LOCKBITS
ResetHeap

Guard

APP rw
.debug_abbrev
.debug_aranges
.debug_frame
-debug_info
-debug_line
-debug_loc
-debug_macinfo
.debug_pubnames
.debug_ranges
-iar.debug_frame
.iar.debug_line
-comment
-iar.rtmodel
-ARM.attributes

Size Address Type
0x00000111 0x00000000
0x0001e169 0x00000000
0x000243a0 0x00000000
0x000000ac 0x00000000
0x0002ddf4 0x00000200
0x00009000 0x000f7000
0x00001490 0x20000000
0x00000030 0x20001490
0x00002148 0x2003dce0
0x00006325 0x00000000
0x000037ac 0x00000000
0x0003a2f5 0x00000000
0x00063435 0x00000000
0x00064f5¢c 0x00000000
0x00010fe3 0x00000000
0x00009941 0x00000000
0x00007132 0x00000000
0x00003778 0x00000000
0x00015349 0x00000000
0x00020199 0x00000000
0x001d394a 0x00000000
0x00000032 0x00000000
0x0000002e 0x00000000

silabs.com | Building a more connected world.

STRTAB
STRTAB
SYMTAB
PROGBITS
PROGBITS
NOBITS
NOBITS
NOBITS
NOBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS
PROGBITS

Rev.3.1 | 96

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.10 Get RAM and Flash Usage of an ELF Application

Calculate the static RAM usage and the flash storage usage of an application from an Executable and Linkable Format (ELF) file, and
print usage details of the RAM sections.

If the --map option is provided with the path to the .map file created when building the application (only GCC map files are supported),
the available RAM and flash storage will also be displayed.

If no map file is available, the --device option can be provided to let Commander infer the RAM and flash sizes of the device from its
part number.

Note: Any changes you might have introduced to the memory regions on your specific device will not be reflected if you are using the
--device option.

Command Line Syntax

$ commander util usage <filename> [--map <filename>]--device <device part no.>] [--include-section <ELF
section> --exclude-section <ELF section>]

Command Line Input Example
$ commander util usage my_elf.out --map my_mapfile.map

Command Line Output Example

Ram usage : 262144 / 262144 B (100.00 %)
-bss : 3344 B (C 1.28 %)
.data : 152 B (0.06 %)
-heap : 254552 B (97.10 %)
.stack : 4096 B (1.56 %)

Flash usage : 23884 / 1564672 B (1.53 %)

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 97

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.11 Print Header Information of an RPS File

Parse and print the information contained in the header of an RPS file. The printed information includes (but is not limited to) security
settings, signature data, bootloader instructions, flash address, image type, and image size. If the provided RPS file is a combined RPS
image, the data for all constituent images is printed sequentially. If the image is encrypted, the bootloader instructions will be unavaila-
ble.

RPS files for on-device key upgrades are also supported by this command.

Command Line Syntax

$ commander util rpsinfo <filename>

Command Line Input Example

$ commander util rpsinfo image.rps

This command line prints the information contained in the header of 'image.rps'.

Command Line Output Example

RPS application image

Application info:
Combined image bit set
Image type

Image size

No
TA application
0x001986A0 (1672864 B)

Flash address - 0x00011000
Firmware version : 0x020101BF
Firmware version ext. - Ox1610ABFF
Counter = 0x00000000 (0)
PSRAM : No

Security settings:

Integrity check : CRC

CRC : 0x844D33FA (2219652090)
Encrypted : No

Signed : No

Boot descriptor info:

Boot desc. offset : 0x0080

IVT offset = 0x00000000

3 boot descriptor entries found:
Length : 0x000140 (320)
Destination : 0x00000000

Length : Ox000CFC (3324)
Destination : 0x00000B04

Length : 0x01A984 (108932)
Destination : 0xO000E948

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 98

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19 OTA Commands

6.19.1 Create an OTA Bootloader File

Creates a Zigbee Over-the-air (OTA) bootloader file from one or more Gecko Bootloader (GBL) files and writes the output to the speci-
fied OTA file.

Command Line Syntax

$ commander ota create --upgrade-image <filename> --manufacturer-id <ID> --image-type <image type> --firmware-
version <version> --string <text> -o <outfile> [--manufacture-tag <tag ID:filename> -stack-version <version> --
credentials <credentials> --destinations <EUI64> --min-hw <version> --max-hw <version>]

Command Line Input Example

$ commander ota create --upgrade-image example.gbl --manufacturer-id 0x1002 --image-type 0x5678 --firmware-
version 0x00000005 --string "Example" -o example.ota

Creates an OTA file example.ota from the GBL upgrade image example.gbl.

Command Line Output Example

Initializing OTA file...
Writing header data...
Manufacturer ID : 0x1002
Image Type : 0x5678
Firmware version: 0x00000005

Stack Version 0x0002
Header String : Example
Writing OTA file ...

DONE

6.19.2 Create a Null OTA File

The certification process for the Zigbee Over-the-Air (OTA) Bootload cluster client requires that the manufacturer provides a NULL up-
grade file to the test house for testing. A NULL OTA upgrade file does not contain an actual upgrade image inside it (such as a Gecko
Bootloader (GBL) file). It is much smaller than a full upgrade image, but otherwise the same as a normal Zigbee OTA file.

You create NULL files by using the —--nul I option instead of the --upgrade-image option. The --nul 1 option consists of atag ID and a
tag length. The tag ID should be something other than 0x0000, which Zigbee has defined as "Upgrade Image". The tag length is a
number of bytes, usually something small, such as 10. This option generates a sequence of bytes, starting at 0 and incrementing based
on the tag length passed in.

Command Line Syntax

$ commander ota create --null <tag ID:tag length> --manufacturer-id <ID> --image-type <image type> --firmware-
version <version> --string <text> -o <outfile> [--credentials <credentials> --destinations <EUI64> --min-hw
<version> --max-hw <version>]

Command Line Input Example

$ commander ota create --null Oxffff:10 --manufacturer-id 0x110c --image-type 0x5678 --firmware-version 0x0102
--string "NULL OTA file" -o ~/projects/Binaries/null._ota

Creates a NULL OTA file with a tag ID Oxffff and a tag length of 10 bytes.

Command Line Output Example

Initializing OTA file...
Writing OTA file ...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 99

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19.3 Print OTA File Information

Parses and prints the contents of an Over-the-air (OTA) file.
Command Line Syntax

$ commander ota parse <ota file>

Command Line Input Example

$ commander ota parse example.ota

Displays content of the OTA file example.ota.

Command Line Output Example

Header Magic: OxObeeflle
Header Version: 0x0100
Header Length: 56 bytes
Header Field Control: 0x0000
Manufacturer ID: 0x110c
ImageType: 0x0027 (Manufacture Specific)
Firmware Version: 0x01020509
Zigbee stack version: 0x0002 (ZigBee Pro)
Header String: NULL
Image Size: 121680 bytes
Found 4 tags
Tag ID: 0x0000 (Upgrade Image)
Tag Length: 120572 bytes
Tag ID: OxffO01 (Manufacturer Specific)
Tag Length: 516 bytes
Tag ID: Oxff3e (Manufacturer Specific)
Tag Length: 504 bytes
Tag ID: Oxff46 (Manufacturer Specific)
Tag Length: 8 bytes
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 100

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19.4 Sign an OTA File

The Zigbee Smart Energy Profile requires that the manufacturer signs Over-the-Air (OTA) files. The OTA client must validate the down-
loaded files prior to installation. Images are signed using certificates issued by Certicom. After the images are signed, the signer's certif-
icate is included automatically as a tag in the OTA file, and a signature tag is added as the last tag in the OTA file. For more informa-
tion, see AN714: Smart Energy ECC-Enabled Device Setup Process.

Note: MacOS does not support OTA signing.

Command Line Syntax

$ commander ota create --sign --certificate <certificate> --upgrade-image <filename> --manufacturer-id <ID> --
image-type <image type> --firmware-version <version> --string <text> -o <outfile> [--credentials <credentials>
--destinations <EUI64> --min-hw <version> --max-hw <version>]

Command Line Input Example

$ commander ota create --sign --certificate certificate.txt --upgrade-image example.gbl --manufacturer-id
0x0345 --image-type 0x4567 --firmware-version 0x00000002 --string ''Signed OTA file"™ -0 signed_file.ota

Creates a signed OTA file using certificate certificate.txt.

Command Line Output Example

Creating OTA file...
Writing header data...
Manufacturer 1D : 0x0345

Image Type : 0x4567
Firmware version: 0x00000002
Stack Version = 0x0002

Header String : Signed OTA file

Digest: 8DFD32A4C6F3C39E6C152F33A16AEAD2
Signed file using certificate.
Successfully verified signature.

Writing OTA file signed_file.ota...

DONE

6.19.5 Create an OTA File for External Signing

Create an Over-the-air (OTA) image to be signed externally. The external certificate is added to the image. The signature can be added
to the image using the sign command.

Command Line Syntax

$ commander ota create --extsign --certificate <certificate> --upgrade-image <filename> --manufacturer-id
<ID> --image-type <image type> --firmware-version <version> --string <text> -o <outfile> [--credentials
<credentials> --destinations <EUI64> --min-hw <version> --max-hw <version>]

Command Line Input Example

$ commander ota create --extsign --certificate certificate.txt --upgrade-image example.gbl --manufacturer-id
0x0345 --image-type 0x4567 --firmware-version 0x00000002 --string "Silicon Labs Ota Support" -0
example_file.ota

Command Line Output Example

Creating OTA file...

Writing header data...
Manufacturer 1D : 0x0345
Image Type : 0x4567
Firmware version: 0x00000002

Stack Version 0x0002
Header String : Silicon Labs Ota Support
Writing OTA file example_file.ota.extsign. ..

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 101

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19.6 Externally Sign an OTA File

Use the Simplicity Commander sign command to append an externally created signature to an Over-the-Air (OTA) file. You must
specify the curve used to create the signature using the --curve option. Available curves are 163k1 or 283k1.

Command Line Syntax
$ commander ota sign <filename> --curve <curve (163k1]|283k1l)> --signature <filename> -o <outfile>

Command Line Input Example

$ commander ota sign example.ota --curve <curve (163k1]283k1l)> --signature signature.txt -o signed_file.ota
Appends the externally created signature to the OTA file.

Command Line Output Example

DONE

6.19.7 Verify Signature of an OTA File

Use the Simplicity Commander verify command to verify the signature of an Over-the-Air (OTA) file. You must provide the certificate
used to sign the file.

Note: MacOS does not support OTA signature verification.

Command Line Syntax

$ commander ota verify <filename> --certificate <certificate>

Command Line Input Example

$ commander ota verify signed_file.ota --certificate certificate.txt

Verifies the signature of the OTA file.

Command Line Output Example

Digest: 8ABB04618622595401AD45FA33C7D670
Successfully verified signature
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 102

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19.8 Create an OTA Matter File
Create a Matter Over-the-air (OTA) software update file from an application and write the output to the specified OTA file.

Command Line Syntax

$ commander ota create --type matter --input <filename> --vendorid <vendor ID> --productid <product ID> --
swversion <version> --swstring <version string> --digest <digest algorithm> [--releasenote <url> --min-sw
<version> --max-sw <version>] --output <filename>

Supported digest algorithms are
+ sha256

+ sha384

* shab512

* sha3 224

» sha3 256

* sha3 384

* sha3 512

Command Line Input Example

$ commander ota create --type matter --vendorid 0x1234 --productid 0x4321 --swversion 0x300001 --swstring
"3.0.1" --input application.bin --digest sha256 --releasenote '"https://releasenotes.com” --min-sw 0x300000 --
max-sw 0x400000 --output upgrade_Tfile.ota

Creates an OTA file upgrade _file.ota from the application image application.bin.

Command Line Output Example

Creating OTA file...
Writing header data...

Vendor 1D : 0x1234

Product ID : 0x4321

Software Version : 0x00300001

Software Version String: 3.0.1

Min Software Version = 0x00300000

Max Software Version = 0x00400000

Release Note : https://releasenotes.com
Digest Type : sha256

Writing OTA file upgrade_file.ota...
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 103

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.19.9 Parse a Matter OTA File

Parse and print the contents of a Matter Over-the-air (OTA) software update file. The optional --output option extracts the application
from the OTA file and writes it to the file specified by the --output option.

Command Line Syntax

$ commander ota parse <ota file> --type matter [--output <application>]

Command Line Input Example

$ commander ota parse example.ota --type matter --output my_application.bin

Displays content of the OTA file example.ota and extracts the application from the OTA file and writes it to my_application.bin.

Command Line Output Example

Magic: lbeeflle
Total Size : 977 bytes
Header Size : 105 bytes
Header TLV:

o]
[1]1
[2]
31
[41
[3]1
61
L71
81
91

Vendor ID
Product 1D
Version :
Version String:
Payload Size
Min Version
Max Version
Release Notes
Digest Type
Digest

: 4660 (0x1234)
1 17185 (0x4321)
: 3145729 (0x300001)

3.0.1

: 856 (0x358)

: 3145728 (0x300000)

1 4194304 (0Ox400000)

: https://releasenotes.com

:1 (Ox1)

: 8f259c4727adbe755ecla49e8bfdbedb3486F53721cae5434efe5d9971eb5d55

Writing application to my_application.bin...

silabs.com | Building a more connected world. Rev. 3.1 | 104

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.20 Post-Build Command

6.20.1 Execute a Project Post-Build File

Simplicity Commander takes a project post-build description file in Yaml Ain't Markup Language (YAML) format, produced by Simplicity
Studio, and executes sequentially the specified tasks in the file.

Command Line Syntax

$ commander postbuild <filename> [--parameter <name:value>]

Command Line Input Example

$ commander postbuild project _name.slpb --parameter "build_dir:path_to build dir"
Executes the steps in the post-build pipeline defined in project_name.slpb.

Command Line Output Example

Parsing file project_name.slbp...
Running task copy.- - -

Running task convert. ..

Running task GBL create...
Running task OTA create...

DONE

The post-build pipeline consists of three sections:
» Parameters: named variables whose value is taken from the command line upon pipeline invocation.

» Constants: named variables whose value is taken from the post-build file itself or a path to another post-build
file from which constants are inherited.

+ Steps: list of tasks to be invoked, making use of the above declared variables.

See below for an example post-build file:

parameters:
- name: artifact
- name: build_dir
constants:
- name: project_name
value: my_project

steps:
- task: copy
input: "{{build_dir}}/{{project name}}.s37"
output: "{{artifact}}/{{project_name}}.s37"

- task: convert
input: "{{build_dir}}/{{project name}}.out"
include-section: P2 ro
output: "{{artifact}}/{{project_name}}.bin"

silabs.com | Building a more connected world. Rev. 3.1 | 105

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Tasks

Seven different types of tasks are supported. The tasks are identified with the following names:
* copy

* convert

* convert_rps

» create_gbl

* create_ota

* create_rps

* usage

The tables below summarize the required options and optional options for each task.

Table 6.2. copy

Required Options

input: <filename>

output: <filename>

Optional Options

export: <constant value>

Table 6.3. convert

Required Options

input: <filename>

output: <filename>

Optional Options

export: <constant value>

keyfile: <key file>

crc: <true>

certificate: <certificate file>

include-section: <ELF section>

exclude-section: <ELF section>

signature: <signature file>

verify: <key file>

Table 6.4. convert_rps

Required Options

output: <RPS filename>

Optional Options

app: <M4 RPS filename>

taapp: <TA RPS filename>

app-version: <version number>

silabs.com | Building a more connected world. Rev. 3.1 | 106

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

fw-info: <firmware info>

sign: <key filename>

sha-type: <SHA-XXX>

encrypt: <key filename>

mic: <key filename>

combinedimage: <true>

Table 6.5. create_gbl

Required Options

output: <filename>

Optional Options

export: <constant value>

app: <app image>

bootloader: <bootloader image>

seupgrade: <SE upgrade image>

metadata: <metadata bin file>

compress: <app compression algorithm>

certificate: <certificate file>

sign: <key file>

encrypt: <AES key file>

extsign: <true>

include-section: <section>

exclude-section: <section>

Table 6.6. create_ota

Required Options

input: <filename> (same as upgrade-image)

output: <filename>

manufacturer-id: <ID>

firmware-version: <version>

image-type: <image type>

string <text>

Optional Options

export: <constant value>

upgrade-image: <filename>

manufacturer-tag: <tag ID>

stack-version: <version>

silabs.com | Building a more connected world.

Rev. 3.1 | 107

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

credentials: <credentials>

destination: <EUI164>

min-hw: <version>

max-hw: <version>

certificate: <filename>

sign: <true>

Table 6.7. create_rps

Required Options

input: <application filename>

output: <RPS filename>

Optional Options

address: <address>

app-version: <version number>

include-section: <section>

exclude-section: <section>

fw-info: <firmware info>

sign: <key filename>

sha-type: <SHA-XXX>

encrypt: <key filename>

mic: <key filename>

combinedimage: <true>

Table 6.8. usage

Required Options

input: <application ELF filename>

Optional Options

map: <filename>

device: <device part number>

include-section: <ELF section>

exclude-section: <ELF section>

silabs.com | Building a more connected world. Rev. 3.1 | 108

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21 RPS Commands

SiWx917 devices require that application binaries are converted to RPS images before flashing. Simplicity Commander can be used to
convert M4 application binaries to RPS images, apply security features, and to combine multiple RPS images into a single RPS file.

Simplicity Commander's RPS image creation supports bin, hex, SRec and ELF image formats. Commander will prepend an RPS style
header to the provided application image, containing information used by the device's bootloader. An application version number may
be provided using the --app-version option, and additional firmware/device information can be provided using the --fw-info option.
If you intend on combining one or multiple RPS application images, the --combinedimage flag can be provided to prepare the image for
combining with other eligible RPS images.

Simplicity Commander also supports creating RPS key images for upgrading on-device M4 keys.

6.21.1 Create an RPS File From a Binary Image
To create an RPS file from a binary image you must provide an application start address using the --address flag.

Command Line Syntax

$ commander rps create <output filename> --app <filename> --address <start address> [--app-version <version
no.> —-fw-info <firmware info> --combinedimage]

Command Line Input Example

$ commander rps create output.rps --app app-.bin --address 0x08212000

This command line creates an RPS file from a binary image with flash address '0x08212000' and saves it to the file named 'output.rps'.

Command Line Output Example

Parsing file app.bin...
RPS file successfully created at “output.rps”
DONE

6.21.2 Create an RPS File From an ELF Image

When generating an RPS file from an Execution and Linkable Format (ELF) image, you can use the --include-section and --
exclude-section options to either include or exclude certain ELF sections from the application image of the output RPS file. If neither
of these options is provided, Simplicity Commander will include all sections that appear to be part of the application.

You can include or exclude multiple sections by providing the respective options repeatedly.

Command Line Syntax

$ commander rps create <output Tfilename> --app <filename> [--include-section <section> --exclude-section
<section> --app-version <version no.> --fw-info <firmware info> --combinedimage]

Command Line Input Example

$ commander rps create output.rps --app app-axf --include-section .text --include-section .data

This command line creates an RPS file from the sections '.text' and '.data' of an ELF application file and saves it to the file named
‘output.rps'.

Command Line Output Example

Including ELF section(s):
.text
-data
Parsing file app.axf...
RPS file successfully created at "output.rps”
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 109

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21.3 Create an RPS File from a Hex/s37 Image
You can create an RPS file from an Intel Hex (hex) image or from a Motorola S-record (s37) image.

Command Line Syntax

$ commander rps create <output filename> --app <filename> [--app-version <version no.> --fw-info <firmware
info> --combinedimage]

Command Line Input Example

$ commander rps create output.rps --app app-hex

This command line creates an RPS file from a hex image and saves it to the file named 'output.rps'.

Command Line Output Example

Parsing file app.hex. ..
RPS file successfully created at "output.rps”
DONE

6.21.4 Create an RPS File For Upgrading On-Device Key

Creating an RPS key file requires a new key to store on the device, the previous (current) key stored on the device, as well as a private
ECDSA key (.pem) for signing the RPS file. Only the device's M4 public key and the M4 OTA key can be upgraded, being denoted by
the key types public and OTA, respectively.

Options --new-key and --prev-key support keys as plain hex-strings (e.g. '0123456789ABCDEF'), or as .h-files containing comma-
separated hexadecimal values (each prefixed with '0x'). If the provided key type is public, the new and previous keys can also be
provided as .pem-files. Alternatively, an eligible key configuration JSON file can be provided to let Commander collect the required keys
automatically.

Command Line Syntax

$ commander rps create <output filename> --key-type <"public”"]"ota"> --new-key <key> --prev-key <key> --sign
<filename>

Command Line Input Example

$ commander rps create key.rps --key-type “public® --new-key new-key.h --prev-key old-key.h --sign private-
key.pem

This command line creates an RPS key file for updating the on-device M4 public key, and saves it to the file named 'key.rps'.

Command Line Output Example

Parsing new key "new-key.h"...

Parsing previous key "old-key.h"...

Parsing signing key "private-key.pem®...

Signing image. ..

Image SHA256: 1c01440a60849ff35F56ed09fb468bbf2f92F3c8d6e50chb5b9c12b4chb38c9df3
R = EO3FC4A415E6FEA584F48CCO8E1FSEE45090A2CESEBC176C44720D8314DAEALC

S = B7CED83970B74B2E75F3E42B229DBA022265BB6E319A777AA9F530380052494B

RPS file successfully created at “key.rps-®.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 110

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21.5 Create a Secure RPS Application Image

RPS application images support multiple security-related features: AES-ECB-based encryption, AES-CBC MIC integrity check, and
ECDSA signatures (SHA-256, SHA-384, and SHA-512). By default, these features are disabled, and a CRC-based integrity check is
used on the RPS file contents.

The keys for encryption and MIC are symmetric keys (32 bytes in length), and can be provided as hex strings, .bin files or as .h-files
containing comma-separated hexadecimal values (each prefixed with '0x'). Alternatively, an eligible key configuration JSON file can be
provided to let Commander collect the required keys automatically. If MIC integrity check is used, a custom initialization vector (V) for
the MIC algorithm may be provided as a binary file containing a 16 byte 1V, using the --iv option.

Command Line Syntax

$ commander rps create <output filename> --app <application filename> --encrypt <key> --mic <key> [--iv <iv>]
--sign <key> [--sha <sha type>] [--app-version <version no.> --fw-info <firmware info> --combinedimage]

Command Line Input Example

$ commander rps create secure-app.rps --app app-hex --encrypt keyconfig.json --mic mkey.bin --sign private-
key.pem --sha SHA-512

This command line creates a secure RPS file 'secure-app.rps' from the binary image 'app.hex’, encrypted using the symmetric key in
'keyconfig.json’, MIC protected using the key 'mkey.bin', and signed (SHA-512) using the private key 'private-key.pem’'.

Command Line Output Example

Parsing file app.hex. ..

Parsing MIC key "mkey.bin®...

Calculating MIC of image...

Parsing encryption key "keyconfig.json®...

Encrypting image...

Parsing signing key "private-key.pem®...

Signing image. ..

Image SHA512: cd7c5ca70167e91ae22e519e25e8F111967879bbfda852e75d77clc3a54c07cd7
90a2ddfd54f0a55d065dd964cblde49afh92F96d86act52d591e213F1c41700

R = CE26333E667842859469622C4E35B72B1C1FCA7D148F58FD67F66C70449A4092
S = 91EA3A02A4B7374401A46161869819AA14065FE760C2781466BAD0643AD8FF60
RPS file successfully created at "secure-app.rps”.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 111

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21.6 Convert an Existing RPS Application Image

Simplicity Commander can be used to convert already existing non-secure (no encryption, MIC, or signature) RPS images (both Threa-
dArch (TA) and M4 images) into secure images by applying AES-ECB encryption, AES-CBC MIC integrity check, and ECDSA signa-
tures. Non-secure images can also be modified to support combining with other RPS images by providing the --combinedimage flag,
which sets the COMBINED _IMAGE bit in the RPS header.

M4 RPS images are provided using the --app option, whereas TA RPS images are provided using the --taapp option.

Command Line Syntax

$ commander rps convert <output filename> --app <application filename> | --taapp <application filename> [--
encrypt <key> --mic <key> --sign <key> --app-version <version no.> --fw-info <firmware info> --combinedimage]

Command Line Input Example

$ commander rps convert secure-app-rps --app app-rps --encrypt ekey.h --mic mkey.h --sign private-key.pem --
app-version 0x00010209 --combinedimage

This command line takes the non-secure M4 RPS 'app.rps' and creates a secure RPS application image with encryption, MIC integrity
check, and SHA-512 based signature, and saves it to the file named 'secure-app.rps' The command also sets a new application version
number in the RPS header, and it prepares the image for combining.

Command Line Output Example

Setting COMBINED_IMAGE flag. ..

Parsing file app.hex. ..

Parsing MIC key "mkey.h®"...

Calculating MIC of image...

Parsing encryption key "ekey.h"...

Encrypting image...

Parsing signing key "private-key.pem®...

Signing image. ..

Image SHA256: e53775814dc6lc2echbel4f1b1d9310c8d79ad96681a9f6258cd427cbc9cd6576
R = CE26333E667842859469622C4E35B72B1C1FCA7D148F58FD67F66C70449A4092
S = 91EA3A02A4B7374401A46161869819AA14065FE760C2781466BAD0643AD8FF60
RPS file successfully created at "secure-app.rps”.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 112

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21.7 Combine Multiple RPS Images Into a Single RPS File

Using Simplicity Commander, you can combine an M4 RPS application image with a ThreadArch (TA) RPS application image into a
single RPS file. For an RPS image to be eligible for combining, the COMBINED_IMAGE bit must be set in the header of the image, either
during the image's creation, or by converting an already existing non-secure RPS image.

The M4 image is provided via the --app option, and is always placed first within the combined image. The TA image is provided using
the --taapp option.

The combined image can be signed with a private ECDSA key, provided in .pem format.

Command Line Syntax

$ commander rps convert <output filename> --app <M4 application filename> --taapp <TA application filename> [--
sign <key filename>]

Command Line Input Example

$ commander rps convert combined-image.rps --app imagel.rps --taapp image2.rps --sign private-key.pem

This command line takes the M4 RPS image 'image1.rps' and combines it with the TA RPS image 'image2.rps' into a single RPS image
with signature.

Command Line Output Example

Combining images. ..
Adding imagel.rps...
Adding image2.rps. ..
Parsing signing key "private-key.pem®...
Signing combined image...
Image SHA256: e53775814dc6lc2ecbel4flb1d9310c8d79ad96681a9f6258cd427cbc9cd6576
R = CE26333E667842859469622C4E35B72B1C1FCA7D148F58FD67F66C70449A4092
S = 91EA3A02A4B7374401A46161869819AA14065FE760C2781466BAD0643ADSFF60
RPS file successfully created at "combined-image.rps”.
DONE

6.21.8 Create an RPS File for External Signing

Create an RPS file to be signed externally, for instance by a hardware security module (HSM), using the the rps create command
with the --extsign option. The signature can be added using the sign command.

Command Line Syntax

$ commander rps create <output filename> --app <application filename> --extsign [--sha <sha type>]

Command Line Input Example

$ commander rps create app.extsign --app app-hex --extsign

This command line creates an intermediate RPS image 'app.extsign' from the application image 'app.hex’, ready for being signed by an
external signer.

Command Line Output Example

WARNING: No SHA type was provided, defaulting to SHA-256.

Parsing file app.hex. ..

RPS image to be signed externally; skipping signature calculation.
Calculating CRC of image...

RPS file successfully created at "app.extsign®.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 113

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.21.9 Externally Sign an RPS File

Append an externally generated signature file (binary, DER-formatted) to an RPS file created using the rps sign command.

Note: The externally generated signature must be at most 72 bytes long. Shorter signatures will be padded with zeroes.

Command Line Syntax

$ commander rps sign <filename> --signature <filename> --outfile <filename>

Command Line Input Example

$ commander rps sign app-.extsign --signature signature.bin --outfile app.rps

This command line appends the signature in 'signature.bin’ to the intermediate RPS file 'app.extsign’, writing the completed signed RPS
file to 'app.rps'.

Command Line Output Example

Signed RPS file written to "app.-rps-.
DONE

6.21.10 Load RPS Image Onto Device

Simplicity Commander can load RPS images onto SiWx91x devices using the rps load command. Both M4 and NWP (TA) application
images can be loaded using this command. If the --eraseapp option is used, the M4 application will be erased after the NWP firmware
has been loaded.

Command Line Syntax

$ commander rps load <filename> [--eraseapp]

Command Line Input Example

$ commander rps load app-rps

This command line takes the RPS image 'app.rps' and loads it onto the device.

Command Line Output Example

Uploading flashloader...

Waiting for flashloader to become ready
Writing data. ..

Waiting for bootloader to perform upgrade...
Resetting

DONE

6.22 VUART Commands

Simplicity Commander supports reading and sending data over Virtual UART (VUART) over IP using the vuart connect command.
When the command is executed, a TCP socket is opened and connected to the hostname/IP address of the adapter, using port 4900.
The command will then allow for sending and receiving data over the VUART line until termination by either pressing CTRL+C, or by
meeting one of the conditions described below.

silabs.com | Building a more connected world. Rev. 3.1 | 114

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.22.1 VUART Communications Until Timeout
If the --timeout option is used, the command will terminate if no data is received from the target within the specified time (in seconds).

Command Line Syntax

$ commander vuart connect <IP or hostname> [--timeout <timeout in s>]

Command Line Input Example

$ commander vuart connect 10.0.0.1 --timeout 5

This command line connects to the target device via VUART and will terminate if no data is received in 5 seconds.

Command Line Output Example

Attempting to connect to IP 10.0.0.1 at port 4900...
Connection established!

<data written by the target application>

Timeout: No data received for 5 seconds.

DONE

6.22.2 VUART Communications Until a Marker is Found
If the --endmarker option is used, the command will terminate after finding the specified string in the incoming VUART data stream.

Command Line Syntax

$ commander vuart connect <IP or hostname> [--endmarker <string>]

Command Line Input Example

$ commander vuart connect 10.0.0.1 --endmarker STOP

This command line connects to the target at IP 10.0.0.1 via VUART and terminates if the string 'STOP' is found in the data coming from
the target.

Command Line Output Example

Attempting to connect to IP 10.0.0.1 at port 4900...
Connection established!

<data written by the target application>

Process complete STOP

End marker "STOP®" found.

DONE

6.23 RTT Commands

Simplicity Commander supports reading data from and sending data to the target via SEGGER Real Time Transfer (RTT) using the rtt
connect command. The communications will be active until terminated by pressing CTRL+C, or if one of the conditions described be-
low is met.

By default, the target will be reset during the initialization of the RTT connection. Providing the --noreset option will prevent this.

silabs.com | Building a more connected world. Rev. 3.1 | 115

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.23.1 RTT Communications Until a Marker is Found
If the --endmarker option is used, the command will terminate after finding the specified string in the RTT data stream.

Command Line Syntax

$ commander rtt connect [--endmarker <string>]

Command Line Input Example

$ commander rtt connect --endmarker STOP

This command line starts RTT communications with the target device and will terminate if the string 'STOP' is received from the target
device.

Command Line Output Example

RTT successfully initialized.

Searching for RTT block in device memory...
Searching for RTT block in device memory...
RTT buffer "Terminal® found!

RTT status: Running

Read buffers: 3

Write buffers: 3

RTT console connected, enter CTRL+C to terminate.
<data written by application>

Process complete STOP

End marker "STOP" found.

DONE

6.23.2 RTT Communications Until Timeout
If the —-timeout option is used, the command will terminate if no data is received from the target within the specified time (in seconds).

Command Line Syntax

$ commander rtt connect [--timeout <timeout in s>]

Command Line Input Example

$ commander rtt connect --timeout 20

This command line starts RTT communications with the target device and will time out after 20 seconds if no more data is received.

Command Line Output Example

RTT successfully initialized.

Searching for RTT block in device memory...
Searching for RTT block in device memory...
RTT buffer "Terminal® found!

RTT status: Running

Read buffers: 3

Write buffers: 3

RTT console connected, enter CTRL+C to terminate.
<data written by application>

Timeout: No data received for 20 seconds.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 116

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.23.3 RTT Communications Over Virtual Terminals
Commander supports reading data from 16 virtual RTT terminals (indexed 0-15), specified by the --terminal option.
The default virtual terminal used is virtual terminal 0. Virtual terminals are only supported on read channel O ("Terminal").

Command Line Syntax

$ commander rtt connect [--terminal <virtual terminal index>]

Command Line Input Example

$ commander rtt connect --terminal 4

This command line starts RTT communications with the target device and listens to RTT virtual terminal 4.

Command Line Output Example

RTT successfully initialized.

Searching for RTT block in device memory...
Searching for RTT block in device memory...
RTT buffer "Terminal® found!

RTT status: Running

Read buffers: 3

Write buffers: 3

RTT console connected, enter CTRL+C to terminate.
<data written by application>

Connection terminated by user.

DONE

6.23.4 RTT Communications With a Custom RTT Buffer Configuration

By default Commander will try to locate the RTT block automatically. However, the RTT block address may be specified explicitly by
providing the --blockaddress option. The default read buffer (RTT up-buffer) and write buffer (RTT down-buffer) indices default to 0,
but may be set by providing the --readbuffer and --writebuffer options, respectively. Buffers may also be specified by name.

Note: Commander will look for the specified RTT read buffer during the RTT block search. If this buffer was not initialized by the target
application before the search was started, the RTT block search may fail.

Command Line Syntax

$ commander rtt connect [--blockaddress <address> --readbuffer <buffer index/name> --writebuffer <buffer index/
name>]

Command Line Input Example

$ commander rtt connect --blockaddress 0x10002000 --readbuffer "'CustomBuffer'” --writebuffer 2

This command line starts RTT communications with the target device and looks for RTT read buffer "CustomBuffer" in the RTT block
located at address 0x10002000 in the device memory. After the connection is established, data will be read from the "CustomBuffer"
RTT up-buffer, and data will be written to the target via the RTT down-buffer of index 2.

Command Line Output Example

RTT successfully initialized.

Searching for RTT block at address 0x10002000. . .
RTT buffer "CustomBuffer® found!

RTT status: Running

Read buffers: 3

Write buffers: 3

RTT console connected, enter CTRL+C to terminate.
<data written by application>

Connection terminated by user.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 117

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.24 Serial Commands

Simplicity Commander can be used to transfer files to SiWWx917 devices over the adapter's serial (VCOM) port, using the Embedded
Kermit protocol. These files include M4 or ThreadArch(TA) application images, as well as tokens for unlocking debug access to either
device core.

All serial commands require a physical data connection (i.e. USB cable) between the host computer and the adapter. The serial port
can be explicitly provided using the --serialport option; this will also bypass all J-Link specific handling of the adapter board/kit. If the
J-Link serial number is provided via the --serialno option, the adapter's serial port is automatically inferred by Commander.

serial file transfers can be aborted by pressing CTRL+C. Providing --showprogress will display a progress bar for the ongoing file
transfer.

Simplicity Commander will attempt to configure the serial communication to use the highest available speed (921600 baud), depending
on the specific adapter board and the target device. If this configuration is not desired, you may provide the --fixedspeed option to let
Commander skip this step.

Note: Prior to running any of the serial commands, the target device must be booted in ISP mode. Some adapter boards support
programmatically restarting their target devices in ISP mode; in these cases Commander will attempt to do so automatically.

6.24.1 Load an RPS Application Over Serial

RPS images can be loaded to either the M4 or the NWP core of the SiWx917 device using the serial load command. The core to
which the application is loaded is determined by the contents of the image's RPS header.

Command Line Syntax

$ commander serial load <RPS filename> [--serialport <port name> --showprogress --fixedspeed]

Command Line Input Example

$ commander serial load app.rps --serialport COM4

This command line loads the application image 'app.rps' to the device, using serial port COM4.

Command Line Output Example

Using serial port "COM4" for file transfers.
Initializing M4 firmware upgrade. ..
Sending file(s):
app.rps
M4 firmware was successfully uploaded.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 118

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.24.2 Lock Debug Access to M4/NWP Core
Simplicity Commander can lock debug access via the JTAG interface to both the M4 and the NWP(TA) core of SiWx917 devices.

Providing the --token option, a token can be created upon locking, which can be used for unlocking debug access to the device later.
Creating this token requires a private ECDSA key provided via the --key option, used for signing the token.

For the sake of redundancy, in case the process of saving the token file should fail, the complete token raw data is always printed to the
console.

Optionally, 7 bytes (exactly) of user data can be provided using the --userdata option, to be stored in the token file. These bytes are
provided as a hex string.

Note: After the serial lock command has been run, the device needs to be power cycled for the debug access changes to take ef-
fect.

Command Line Syntax

$ commander serial lock <*M4"|"TA"> [--token <filename> --key <filename> --userdata <hex string> --serialport
<port name>]

Command Line Input Example

$ commander serial lock TA --token unlock.token --key private-key.pem --userdata AABBCCDDCOFFEE --serialport
COom4

This command line locks the JTAG debug access to the NWP core of the device, and saves the debug access unlock token to the file
'unlock.token'. The bytes AABBCCDDCOFFEE are stored in the user data section of the token, and the token is signed by the 'private-
key.pem' ECDSA key.

Command Line Output Example

Using serial port "COM4" for file transfers.

Initializing debug lock...

Nonce generated by the device: 7A3FFEEFBB48EFC7EB7617E9OE7FDDEE

Debug access locked.

Parsing signing key "private-key.pem"...

Debuglock token raw data:
7a3ffeefbb48efc7eb7617e90e7fddee74aabbccddcOffee304502210094cf2c372ad5F3a9fd2b46b2b0c25a7d6d853e3aab10
93bcdd9746b35648b3c602203c3961aed180bT08d5bF2b2d703b7470ed923b18F5d7ealbal0b545d65318aaa00
Debuglock token written to “"unlock.token®.

Debug access will be locked after the device is reset.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 119

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.24.3 Unlock Debug Access to M4/NWP Core With Existing Token

If the unlock token from the last time the device was locked is available, debug access to the M4/NWP(TA) core over the JTAG inter-
face can be unlocked by using the serial unlock command.

Note: After the serial unlock command has been run, the device needs to be power cycled for the debug access changes to take
effect.

Command Line Syntax

$ commander serial unlock <*M4%|"TA"> --token <filename> [--serialport <port name>]

Command Line Input Example

$ commander serial unlock TA --token unlock.token --serialport COM4

This command line unlocks debug access to the NWP core, by sending the token 'unlock.token' to the device.

Command Line Output Example

Using serial port "COM4" for file transfers.
Verifying debuglock token “unlock.token®...
Initializing debug unlock. ..
Sending file(s):

unlock. token
Debug access will be unlocked after device is reset.
DONE

6.24.4 Unlock Debug Access to M4/NWP Core Without Existing Token

Simplicity Commander can unlock the debug access to the M4/NWP(TA) core without the token from when the device was last locked.
This is effectively done by locking the device (thus generating a new token), immediately followed by unlocking the device using this
new, intermediate token. The --key option is required in this configuration, as the intermediate token needs to be signed using a pri-
vate ECDSA key. The --userdata option is optional.

Note: After the serial unlock command has been run, the device needs to be power cycled for the debug access changes to take
effect.

Command Line Syntax

$ commander serial unlock <*M4"|"TA"> --key <filename> [--userdata <hex string> --serialport <port name>]

Command Line Input Example

$ commander serial unlock TA --key private-key.pem --serialport COM4

This command line unlocks debug access to the NWP core by creating a temporary token file that is signed by the ECDSA key 'private-
key.pem'.

Command Line Output Example

Using serial port "COM4" for file transfers.
Initializing debug unlock. ..
Nonce generated by the device: 7A3FFEEFBB48EFC7EB7617E9OE7FDDEE
Parsing signing key "private-key.pem"...
Debuglock token raw data:
7a3ffeefbb48efc7eb7617e90e7fddee74aabbccddcOffee304502210094cf2c372ad5F3a9fd2b46b2b0c25a7d6d853e3aab1093bcdd9746b3564 8k
Debuglock token written to "unlock.token®.
Sending file(s):
unlock. token
Debug access will be unlocked after the device is reset.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 120

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.24.5 Extract Device Part Number
Simplicity Commander can be used to extract the device part number stored on an SiWx917.

Command Line Syntax

$ commander serial getopn

Command Line Input Example

$ commander serial getopn

This command line collects the device part number stored on the device.

Command Line Output Example

SiWG917M111MGTBA
DONE

6.25 Manufacturing Commands

Note: Since Simplicity Commander version 1.16.3, the manufacturing keyword has been changed to mfg917. The manufacturing
alias is (as of version 1.17.3) still available, but it is considered deprecated and may therefore be removed without notice in any future
release of Simplicity Commander.

Simplicity Commander provides tools for provisioning SiWx91x devices with initial configuration and keys for signing/encryption. The
tools are suitable for use in a manufacturing setting and can be used to write and read data to and from regions related to both M4 and
NWP(TA) cores.

For writing/erasing manufacturing data, or running the key provisioning processes (including its initialization), Simplicity Commander de-
pends on custom RAM code being loaded to the device. Loading this code can be skipped by providing the --skipload flag. This op-
tion must only be provided if you are completely certain that the RAM code is already loaded and running on your device, and the use
of the —-skipload flag is therefore generally discouraged.

In case an external flash configuration is used, the flash pinset index can be set using the --pinset option.

For configuring radio-/network co-processor (RCP/NCP) devices, Simplicity Commander communicates via a proprietary serial protocol
to an interface device, which in turn communicates with the RCP/NCP device via serial peripheral interface (SPI) or secure digital input
output (SDIO) commands. In this case, Simplicity Commander requires that you also provide the --serial interface option along with
the --device option. In case you are running multiple mfg917 commands in sequence and without resetting the target device in be-
tween, you may also provide the --skipinit option to skip initializing the target device's SPI/SDIO interface.

Note: mfg917 commands are currently only supported on SiWx917 devices.

silabs.com | Building a more connected world. Rev. 3.1 | 121

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.1 List Available Memory Regions
Simplicity Commander can be used to read/write/erase certain memory regions, including but not limited to:

* M4 and NWP (TA) master boot records (MBR)
+ Efuse

* Boot descriptors

* Keys

» User data

To see the available memory regions on your device as well as their ability for producing JSON output, provide the --list option with
either of the commands read, write, or erase.

Command Line Syntax
$ commander mfg917 read|write]erase --list

Command Line Input Example

$ commander mfg917 read --list

This command line lists all available memory regions that can be read using the manufacturing commands.

Command Line Output Example

Region name JSON supported Description

bfc No Bootloader firmware controller

certs No Certificates

efuse Yes Efuse

efusecopy Yes Efuse copy

efuseipmu Yes Efuse intelligent power management unit
keydesctable No Key descriptor table

m4efusemapversioncft No M4 Efuse map version (common flash)
m4efusemapversiondf No M4 Efuse map verion (dual flash)

m4fmccT No M4 core flash memory controller (common flash)
m4fmedf No M4 core flash memory controller (dual flash)
m4ipmuct Yes M4 core intelligent power management unit (common flash)
m4 ipmudf Yes M4 core intelligent power management unit (dual flash)
m4mbrcf Yes M4 core master boot record (common flash)
m4mbrdf Yes M4 core master boot record (dual flash)
m4ptinfoct No M4 production information (common flash)
m4ptinfodf No M4 production information (dual flash)
pufactkey No PUF activation key

rompatch No ROM patches

sighature No Signature

statickeys No Static keys

storeconf No Store configuration

tafmc No NWP flash memory controller

tafwimg No NWP firmware image

taipmu Yes NWP core intelligent power management unit
tambr Yes NWP core master boot record

userdata No User data

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 122

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.2 Read Memory Region Data From Device

The read data can be output to the terminal or saved to a raw binary file. For supported regions, the output data can also be stored in a
human-readable JSON file. If JSON output is supported and desired, provide an output filename with "json' extension. If you want to
read the region data from a certain offset relative to the start address of that region, you can provide that offset using the --position
option.

Command Line Syntax

$ commander mfg917 read <region> [--out <filename> --position <offset>]

Command Line Input Example

$ commander mfg917 read tambr --out device-mbr.json

This command line reads the tambr region of the device and stores the data output to the file 'device-mbr.json’ in JSON format.

Command Line Output Example

Reading data from region: tambr

Reading 496 bytes from 0x04000000

Writing JSON. ..

Manufacturing data saved to file "device-mbr.json*
DONE

6.25.3 Read Specific Fields From Memory Region

If you are interested in reading only certain data fields from a JSON-supported region, singular values can be extracted by providing the
--property option along with which field and/or sub-field to read from. The --property option can be provided multiple times, and the
fields/sub-fields are given on the format 'field:sub-field'. If you provide only the field name for a data field that also contains named sub-
fields, all the sub-fields will be included in the output.

If JSON output is supported and desired, provide an output flename with "json' extension to store the selected fields in a JSON file.

Command Line Syntax

$ commander mfg917 read <region> [--out <filename> --property <field name[:sub-field name]>]

Command Line Input Example

$ commander mfg917 read tambr —--property m4_clk_configs —--property flash_size —--property
psram_misc_configs:spi_mode

This command line reads the selected fields from the tambr region of the device.

Command Line Output Example

Reading data from region: tambr
Reading 496 bytes from 0x04000000

flash_size = 64
m4_clk_configs:clk_source
m4_clk_configs:div_factor
psram_misc_configs:spi_mode
DONE

I © O

silabs.com | Building a more connected world. Rev. 3.1 | 123

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.4 Read Address Range From Device

Arbitrary address ranges (except any addresses inside the Efuse/OTP area) can be read from the device by omitting the region name
and instead providing the --range option. The --range option accepts input as either <startaddress:endaddress> or as
<startaddress:+length>. Hexadecimal values can be provided using the '0Ox' prefix.

Command Line Syntax
$ commander mfg917 read --range <startaddress>:[<endaddress> OR +<length>]

Command Line Input Example

$ commander mfg917 read --range 0x04000002:+13

This command line reads 13 bytes from the target device from start address 0x04000002 and prints the data to the console.

Command Line Output Example

Reading data from range 0x04000002:0x0400000F. . .
{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
04000000: -- -- 00 00 38 02 00 00 A8 72 EB 28 31 7A 03 --

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 124

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.5 Write Memory Region Data to Device

Manufacturing data that is to be written to a memory region of the device must be provided in either binary format (.s37 and .hex also
supported), or, for eligible memory regions, as a JSON file.

Note: Proceed with caution when writing manufacturing data to your device; writing unsupported/erroneous data/configurations may
result in your device being rendered unrecoverable!

If the provided data is a binary file, the data is written to the device verbatim.

If a JSON file is provided, the region data is instead updated; the memory region is first read from the device, and the fields present in
the JSON file are then used to update the corresponding region data. Lastly, the updated region data is written back to the device. If
applicable, Simplicity Commander will by default also update the region's CRCs/integrity checks when changes have been made. This
can be omitted by providing the --nocrc option.

If you want to write the data starting from a certain offset relative to the start address of that region, you can provide that offset using the
--position option. This is only supported if you are writing binary data; not if you are providing a JSON file.

The --dryrun flag can be added to output the new region data to the terminal instead of writing it to the device.

This command provides no safeguards as to what data is written to the device; it is generally not recommended to write TA (NWP)
MBR data to the device using this command; use the mfg917 provision command for that instead.

Command Line Syntax

$ commander mfg917 write <region> --data <filename> [--pinset <index> --position <offset> --skipload --nocrc --
dryrun]

Command Line Input Example

$ commander mfg917 write tambr --data mbr-updates.json

This command line writes an updated tambr to the device by first reading the tambr region of the device, applying the changes from the
fields provided in the 'mbr-updates.json' JSON file, and finally writing this updated tambr data back to the device.

Command Line Output Example

Reading 496 bytes from 0x00400000. ..

Reading JSON. ..

Writing data to region: tambr

<process output shortened for documentation>

Data loaded successfully

Region "tambr®" was successfully written to device.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 125

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.6 Write Data to Address

Simplicity Commander supports writing data to arbitrary memory addresses (except addresses inside Efuse/OTP areas and MBR re-
gions) by omitting the region name and instead providing the --address option. If you are providing an .s37 or .hex-formatted data file,
the --address option is ignored and Commander will instead infer the address from the address encoded in the data file.

Command Line Syntax

$ commander mfg917 write --data <filename> [--address <address>]

Command Line Input Example

$ commander mfg917 write --data data.bin --address 0x043F7000

This command line will write the contents of 'data.bin' to address 0x043F7000.

Command Line Output Example

Parsing file data.bin...

Writing data to range 0x047CF000:0x047CF020
<process output shortened for documentation>
Data was successfully written to device.
DONE

6.25.7 Erase Memory Region Data From Device
Simplicity Commander can be used to erase the data in a memory region, using the mfg917 erase command.

If you want to erase the region data starting from a certain offset relative to the start address of that region, you can provide that offset
using the --position option.

Command Line Syntax
$ commander mfg917 erase <region> [--position <offset> --pinset <index> --skipload]

Command Line Input Example

$ commander mfg917 erase efusecopy

This command line erases the contents in the efusecopy region of the device.

Command Line Output Example

Writing data to region: efusecopy

<process output shortened for documentation>
Data loaded successfully

Region "efusecopy” was successfully erased.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 126

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.8 Erase Address Range From Device

Simplicity Commander supports erasing arbitrary memory ranges (except addresses inside Efuse/OTP areas and MBR regions) by
omitting the region name and instead providing the --range option.

The --range option accepts input as either <startaddress:endaddress> or as <startaddress:+length>. Hexadecimal values can
be provided using the '0Ox' prefix.

Command Line Syntax
$ commander mfg917 erase --range <startaddress>:[<endaddress> OR +<length>]

Command Line Input Example

$ commander mfg917 erase --range 0x047CF000:+32

This command line starts erases a 32 byte range starting from address 0x047CF000.

Command Line Output Example

Erasing data in range 0x047CF000:0x047CF020.. .
<process output shortened for documentation>
Range was successfully erased.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 127

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.9 Dump Configuration Data of Device

Simplicity Commander supports dumping all data regions containing configuration data to a zip archive, using the mfg917 dump com-
mand.

Note: For zip file compression functionality, the mfg917 dump command requires Microsoft PowerShell version 5.0 or above on Win-
dows, and the zip and unzip system utilities on Linux/Mac

Command Line Syntax

$ commander mfg917 dump <zip archive filename>

Command Line Input Example

$ commander mfg917 dump device_data.zip

This command line reads and dumps all data regions containing configuration data into the 'device_data.zip' archive file.

Command Line Output Example

Reading 40960 bytes from 0x0400f000
Reading 184320 bytes from 0x047cf000
Reading 1024 bytes from 0x40012000
Reading 1024 bytes from 0x040003e0
Reading 58 bytes from 0x40012181
Reading 88 bytes from 0x04000300
Reading 496 bytes from 0x04000000
Reading 1024 bytes from 0x041c0000
Reading 496 bytes from 0x04000000
Reading 58 bytes from 0x041b0258
Reading 496 bytes from 0x04000000
Reading 496 bytes from 0x041b0000
Reading 496 bytes from 0x04000000
Reading 3 bytes from 0x041b0292
Reading 1192 bytes from 0x04002000
Reading 200 bytes from 0x04000238
Reading 72 bytes from 0x040001f0
Reading 4096 bytes from 0x04005000
Reading 3072 bytes from 0x04010400
Reading 1024 bytes from 0x04010000
Reading 58 bytes from 0x04000561
Reading 496 bytes from 0x04000000
Zip archive created at ‘"path/to/device_data.zip'.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 128

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.10 Initialize PUF And Generate Activation Code

To enable security features (encryption/MIC integrity check/signing) on your SiWx917 device, the device's PUF first needs to be initial-
ized and an activation code must be generated on the device. This can be done via the mfg917 init command.

Providing an NWP (TA) MBR (as a binary file) using the --mbr option is optional, and its purpose is to provide information about the
destination address of the activation code. If required, updates to the NWP MBR can be applied by providing a JSON file with the --
data option. If the --mbr option is omitted, the default activation code address is used. Providing --mbr ~default” will use the default
NWP MBR for your device, based on the provided device part number using the --device option.

Note: After the mfg917 init command has been run, the device needs to be power cycled for any changes to take effect.

Command Line Syntax

$ commander mfg917 init [--mbr <Ffilename|“"default®> --data <filename> --pinset <index> --skipload]

Command Line Input Example

$ commander mfg917 init --mbr default --device SiWG917M111LGTBA

This command line initializes the device's PUF and generates an activation code, using a default NWP MBR for the device part number
'SIWG917M111LGTBA'.

Command Line Output Example

Using default MBR for SiWG917M111LGTBA...
<process output shortened for documentation>
Activation code generated successfully

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 129

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.11 Provision Security Keys to the Device

Provisioning device keys is done using the mfg917 provision command, by providing a key configuration JSON file containing the
keys you want to store on your device with the --keys option. Supported keys for storing on the device are M4/NWP (TA) public keys
and M4/NWP OTA keys. In addition, a private attestation key is required for the provisioning sequence.

If you don't want to provision any keys during the provisioning sequence, the --keys option may be omitted.
If required, updates to the NWP MBR can be applied before writing it to the device by providing a JSON file with the --data option.

Note: After the mfg917 provision command has been run, the device needs to be power cycled for any changes to take effect.

Command Line Syntax

$ commander mfg917 provision --mbr <filename]"default®> [--keys <filename> --data <filename> --pinset <index>
--skipload]

Command Line Input Example

$ commander mfg917 provision --keys keys.json

This command line provisions the keys contained in the JSON file 'keys.json' to the device.

Command Line Output Example

Reading MBR from the connected device. ..
Found valid activation code address in MBR: 0x00002000
Intrinsic keys generated successfully.
Programming NWP OTA Key...

Key successfully stored

Programming M4 OTA Key...

Key successfully stored

Programming NWP Public Key. ..

Key successfully stored

Programming M4 Public Key...

Key successfully stored

Programming attestation Key...

Key successfully stored

Programming NWP MBR. ..

Data loaded successfully

Programming key descriptor table...

Data loaded successfully

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 130

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.12 Provision OTP Security Keys to the Device

Provisioning one-time programmable (OTP) keys is done using the mfg917 provisionotpkeys command. Symmetric (AES) and public
(ECDSA) keys can be provided via the --symmetrickey and --publickey options, respectively. These keys can be used later for ena-
bling MIC and signature-based write protection of the device configuration (see 6.25.15 Protect Device Configuration).

The symmetric key must be provided as a .bin file, or as a hex-encoded string in a .txt file. The public key must be provided as a DER-
formatted binary file (.der), or as a .pem file. Alternatively, both options accept a key configuration JSON file, as long as the relevant
OTP keys are available in the JSON file.

Note: Writing OTP keys is a permanent action and cannot be reverted.

Command Line Syntax

$ commander mfg917 provisionotpkeys [--symmetrickey <filename> --publickey <filename> --noprompt]

Command Line Input Example

$ commander mfg917 provisionotpkeys --symmetrickey aeskey.bin --publickey key.pem

This command line reads the symmetric key 'aeskey.bin' and the public key 'key.pem' and writes them into the OTP of the device.

Command Line Output Example

Reading OTP symmetric key from file "aeskey.bin®...
Reading OTP public key from file “key.pem®...

The provided data can be applied to the current Efuse.
Determining which OTP words need updating...

Writing 112 bytes to OTP...

Data was successfully written to the device®"s OTP.
DONE

6.25.13 List Available Device Profiles

Simplicity Commander can be used to store and apply frequently used device configuration JSON files, referred to as 'profiles’. A list of
the available profiles can be produced using the mfg917 provision --listprofiles command. Along with this list, the location of
user-defined profiles is also shown, including instructions on how to add such custom profiles.

Command Line Syntax
$ commander mfg917 --listprofiles

Command Line Input Example

$ commander mfg917 --listprofiles

This command line displays the available profiles on your system, along with the location of custom user-defined profiles.

Command Line Output Example

Profile name Affected regions
giga tambr
macronix tambr
Xme tambr

enable-secure-boot tambr

Custom profiles can be added by placing them in the directory at
"/Users/username/Library/Preferences/SiliconLabs/commander/ProfileStore/Si9lx/" .
The name of the files must be in the format “<profile name>_<region>.json".
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 131

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.14 Provision Device Profile to the Device

Applying a device profile is done through the mfg917 provision command, using the --profile option.

Note: As of version 1.17.3, only TA (NWP) MBR data can be applied as part of a profile.

These profiles may be useful for quickly changing between e.g. secure and non-secure device configurations, or for applying a set of
changes across multiple devices in e.g. a production environment.

Profiles can be provided along with both --mbr and --data options; the changes denoted by the profile will be applied as the last step
before writing the data to the device.

Command Line Syntax

$ commander mfg917 provision --profile <name> [--mbr <Ffilename| "default®> --data <filename>]

Command Line Input Example

$ commander mfg917 provision --profile enable-secure-boot

This command line applies the 'enable-secure-boot' profile to the device's TA (NWP) MBR and provisions it to the device.

Command Line Output Example

Using MBR from the connected device. ..
Applying profile "enable-secure-boot" to tambr...
Reading JSON. ..

Loading RAM code (321776 bytes)...
Starting RAM code. ..

Programming ROM patch...

Data loaded successfully

Programming NWP MBR. ..

Data loaded successfully

Programming M4 MBR...

Data loaded successfully

Programming IPMU data...

Data loaded successfully

Programming M4 Efuse map version...
Data loaded successfully

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 132

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.15 Protect Device Configuration

Simplicity Commander can be used to write-protect the device configuration using the mfg917 protectconfig command. This protec-
tion is permanent and is applied over a user-specified length, starting from address 0x04000000 (the start of the NWP (TA) configura-
tion region). Note that only certain protection lengths are supported, ranging from 1024-65536 bytes. Commander will provide sugges-
tions of the nearest allowed lengths if the provided length is not supported.

Two types of protection are available: message integrity check (MIC)-based protection and signature-based protection. MIC-based pro-
tection requires a 16 byte AES key as a .bin file or as a hex-encoded string in a .txt file, provided with the --symmetrickey option.
Signature-based protection requires a private ECDSA key, either as a DER-formatted binary file (.der), or as a .pem file, provided with
the —--privatekey option. Alternatively, both options accept a key configuration JSON file, as long as the relevant OTP keys are availa-
ble in the JSON file.

When enabling signature-based protection, the public key counterpart of the provided private key must be present on the device. If
there is no such public key stored in the device, Commander will extract the public key from the provided private key and store it on the
device before proceeding.

Note: Enabling configuration protection is permanent and cannot be reverted. Any subsequent attempts at writing new configurations to
a protected device will fail and/or may render your device unrecoverable.

Command Line Syntax

$ commander mfg917 protectconfig <protection> --protectlength <length> [--privatekey <filename> --sha <SHA-
xxx>] [--symmetrickey <filename>] [--noprompt]

Command Line Input Example

$ commander mfg917 protectconfig mic --protectlength 49152 --symmetrickey key.bin

This command line will enable MIC based protection of 49152 bytes of the device configuration, using 'key.bin' as the key for the MIC
computation.

Command Line Output Example

OTP Efuse might not be up to date with the MBR configuration. Copying MBR configuration data into Efuse...
Storing the provided symmetric key in the OTP Efuse...

Computing MIC. ..

Using default IV...

The provided data can be applied to the current Efuse.

Determining which OTP words need updating...

Writing 68 bytes to OTP...

Data was successfully written to the device®"s OTP.

DONE

Command Line Input Example

$ commander mfg917 protectconfig signature --protectlength 16384 --privatekey key.pem

This command line enables signature-based protection of the first 16384 bytes of the device configuration, using the private ECDSA
key 'key.pem' for generating the signature. The signature is placed at the end of the protected region.

Command Line Output Example

OTP Efuse might not be up to date with the MBR configuration. Copying MBR configuration data into Efuse...
Computing signature. ..

The provided data can be applied to the current Efuse.

Determining which OTP words need updating. ..

Writing 128 bytes to OTP...

Data was successfully written to the device®"s OTP.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 133

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.25.16 Get Information About Device Configuration

Key information about the device configuration can be extracted using the mfg917 info command. Simplicity Commander will read
certain regions of your device (including the NWP (TA) MBR and the Efuse regions), parse the information, and present key information
like the device's MAC address, flash size, and current security parameters.

Command Line Syntax

$ commander mfg917 info
Command Line Input Example

$ commander mfg917 info

This command line extracts information about the current configuration of the target device.

Command Line Output Example

Reading 1024 bytes from 0x040003e0

OPN SiWG917M111MGTBA
WiFi MAC address 6C5CB1C43F90
BLE MAC address 6C5CB1C43F92
Flash size 8MB

1711.2.10.1.3.0.7
Ox1F (1.8 MB)

NWP firmware version
MBR variant

Manufacturing SW version 1 2.4 (36)
Application region start address : 0x081f0000
Application code start address : 0x08202000
Application region end address : Ox0840ffFff
Flash configuration : Common flash
Mode : SoC
Integrity protection active : None

NWP roll-back prevention : Disabled
NWP digital signature validation : Disabled
NWP firmware encryption : Disabled
NWP secure boot : Disabled
Application roll-back prevention : Disabled
Application digital signature validation : Disabled
Application code encryption : Disabled
Application secure boot : Disabled

DONE

6.26 VCOM Commands

Simplicity Commander supports configuring the adapter board's Virtual COM (VCOM) configuration (baud rate and handshake) using
the vcom config command.

Additionally, Simplicity Commander can connect to the adapter board's VCOM port to communicate with the target device using the
vcom connect command. Communications will be active until terminated by pressing CTRL+C.

silabs.com | Building a more connected world. Rev. 3.1 | 134

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.26.1 Configure Adapter VCOM Settings

The adapter's VCOM baudrate is set with the --baudrate option. The handshake type is set with the --handshake option, and the
available handshake configurations are 'none' (disabled), 'rtscts' (hardware flow control, RTS+CTS), and 'aux’ (auxiliary UART).

By default, the VCOM settings that are configured using this command are not stored permanently on the adapter board (i.e. rebooting
the adapter will revert the adapter to the previously stored configuration). Provide the --store option if you want the applied configura-
tion to be persistent across adapter reboots.

Note: Handshake type 'aux' is not supported on all adapter boards.

Note: Not all adapter boards support setting a baud rate other than 115200 baud while handshake type 'aux’ is enabled.

Command Line Syntax

$ commander vcom config [--baudrate <baud rate> --handshake <"none®|"rtscts”|"aux"> --store]

Command Line Input Example

$ commander vcom config --baudrate 921600 --handshake none

This command line sets the adapter board's VCOM baud rate to 921600 baud and disables hardware flow control.

Command Line Output Example

Adapter board VCOM handshake type successfully set to "none”.

Adapter board baud rate successfully set to 921600 baud.

Adapter board VCOM configuration not stored; the current configuration may be overwritten if the adapter board
is reset.

DONE

6.26.2 VCOM Communications

Using the vcom connect command, you can communicate with the target device on your adapter board via a serial connection. If you
are connecting to an adapter board over USB (i.e. by providing --serialno), Simplicity Commander will communicate via the serial
port of the adapter. If you are instead connecting over the network (i.e. by providing --ip), Simplicity Commander will open a TCP
socket and connect to the adapter's IP address via port 4901.

The line ending to use can be specified with the --1ineending option. Carriage return (CR) and line feed (LF) is the default line ending.

Providing the --hex option will handle all input and output as hexadecimal strings. No line ending is added in this case, i.e. any provid-
ed line endings are ignored.

For certain adapter boards, you can restart the target in ISP mode upon connecting by providing the --restartinisp option. This is
only supported for SiWx917 devices.

Command Line Syntax

$ commander vcom connect [--hex --restartinisp --lineending <"cr®|"I1f¥"|“"crlf"]"none">]

Command Line Input Example

$ commander vcom connect

This command line starts VCOM communications with the target device using the default line ending.

Command Line Output Example

Opening serial port "COM3"...

Connection established!

<data written by the target application>
e

Serial port was disconnected.

Connection terminated by user.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 135

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.27 Completion Commands

To simplify the user experience while using Simplicity Commander's command line interface (CLI), command completion (TAB comple-
tion) scripts can be generated using the completion generate command. The scripts can be used in your shell environment in order
to provide completion for all available commands, sub commands and options. The scripts also provide automatic serial number com-
pletion for currently connected JLink devices when providing the --serialno option (or its short form, -s), as well as completions for
device part numbers to the --device option (or its short form, -d).

Completion scripts can be generated for the following Unix-based shells:

* bash

« zsh

« fish

Generating a completion script is fast, and thus running Simplicity Commander at the startup of the shell is a simple way to ensure that
the TAB completions are available in the shell session. This will also ensure that with later releases of Simplicity Commander (assum-
ing the previous application package is replaced by the newer version), any new commands, sub commands or options will be added to
the TAB completion.

The procedures for employing the completion scripts depend on the shell in use, and on the exact setup of the shell environment. For
bash and zsh, the completion script can be installed by sourcing the script in the shell's configuration file (.bashrc and .zshrc, respec-
tively). For fish, one common practice is to place completion scripts within the completions directory inside fish's configuration folder,
which on most systems will be ~/.config/fish/completions.

6.27.1 Generate Completion Script

Simplicity Commander supports generating completion scripts using the completion generate command. You can provide an alterna-
tive alias for which the completions will trigger, using the --alias option. This is useful if you have an alias for your installation of Sim-
plicity Commander already defined in your shell environment. Aliases must contain alphanumeric characters only (underscores are also
allowed), and cannot start with a number. The default alias is 'commander'.

By default, this command will output the completion script directly to the console. If you instead want to save the output script to a file,
you can provide the --outfi le option.

Command Line Syntax
$ commander completion generate <shell> [--alias <alias> --outfile <output file>]

Command Line Input Example

$ commander completion generate bash --alias cmder --outfile cmder-completion.sh

This command line generates a TAB completion script for bash, which will trigger for the 'cmder' keyword, and saves it to the file
‘cmder-completion.sh'.

Command Line Output Example

Completion script saved at "path/to/cmder-completion.sh*”
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 136

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.27.2 Install Completion Script

Here follows basic examples on how to install the scripts on bash, zsh and fish shells. All these approaches require that the Simplicity
Commander executable is in your system's PATH or is otherwise visible to your shell environment.

Using this approach, whenever newer versions of Simplicity Commander are released, simply replace the existing Commander applica-
tion package with the new version. All completions will be kept up-to-date, making this installation a one-time only procedure.

bash

Add the following line to your _bashrc configuration file:

source <(commander completion generate bash)

zsh

Add the following line to your .zshrc configuration file:

source <(commander completion generate zsh)
fish

Add the following line to your ~/_.config/fish/config.fish configuration file:

commander completion generate fish > ~/_config/fish/completions/commander.fish

6.28 LittleFS Commands

Simplicity Commander supports initializing and manipulating instances of LittleFS filesystem binary files using the commander
littlefs commands. LittleFS is an open-source lightweight filesystem designed for microcontrollers, with features including power-
loss resilience and flash wear leveling mechanisms.

For all 1ittlefs commands where a LittleFS instance can be provided using the --infi le option, the option can be omitted to instead
let Commander extract the LittleFS instance from the device's flash. By default, Commander will look for the LittleFS instance in the
device's main flash region, however a search start address or range can be specified using the --address or --range options, respec-
tively.

When working with LittleFS instances off-device, Commander needs to be aware of certain device-specific details. The --device op-
tion is therefore required for all 1ittlefs commands when a LittleFS instance is provided to Commander using the --infi le option.
6.28.1 Initialize an Empty LittleFS Instance

Initializing an empty LittleFS instance is done using the littlefs init command. The size of the instance must be specified by either
setting the start address and the size using the --address and --size options, or by providing the range using the --range option.
The LittleFS instance can be stored in .bin, .hex and .s37 file formats.

Command Line Syntax

$ commander littlefs init --outfile <filename> --device <device> [--address <address> --size <size> --range
<addressl:address2>]

Command Line Input Example

$ commander littlefs init --outfile Ifs_hex --device SiIWG917M111MGTBA --address 0x02100000 --size 0x40000

This command line initializes an empty LittleFS instance for an SiIWG917 device, starting from address 0x02100000 with a size of
262144 bytes, and stores the instance in the file 'Ifs.hex'.

Command Line Output Example

Empty LittleFS instance initialized and written to Ifs._hex
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 137

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.28.2 Get Information About a LittleFS Instance

Using the littlefs info command, information about the LittleFS instance can be retrieved. This information includes metadata
about the LittleFS instance, as well as statistics about the storage use.

Command Line Syntax
$ commander littlefs info [--infile <filename> --device <device>]

Command Line Input Example

$ commander littlefs info --infile Ifs.hex -dSiWG917M111MGTBA

This command line parses the LittleFS instance 'Ifs.hex' and displays information about the instance to the console.

Command Line Output Example

Reading LittleFS instance from Ifs_hex...
Parsing file Ifs_hex...

LittleFS disk version : 2.1
Block size (B) > 4096
Max filename length (B): 255
Max Filesize (B) T 2147483647
Max attribute size (B) : 1022

Blocks in use
Storage used
DONE

2/64 (3.13 %)
1287262144 (0.05 %)

6.28.3 Dump a LittleFS Instance From Device

Extracting a LittleFS instance from a device flash or from an application binary can be done using the littlefs dump command. If the
-—infile option is omitted, Commander will search for the LittleFS instance in the connected device's main flash. If the —-infile
option is provided, Commander will instead look for the LittleFS instance in the provided binary file.

Note: The LittleFS instance must be aligned to the start of a flash page/block.

Command Line Syntax

$ commander littlefs dump --outfile <filename> [--infile <filename> --device <device>]

Command Line Input Example

$ commander littlefs dump --outfile 1fs.s37 --infile application.s37 --device SiWG917M111MGTBA

This command line parses the input file 'application.s37', extracts the LittleFS instance and saves it to the output file 'lfs.s37'.

Command Line Output Example

Reading LittleFS instance from application.s37...
Parsing file application.s37...

LittleFS instance written to Ifs.s37.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 138

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.28.4 List Contents in a LittleFS Instance

Listing the files in a LittleFS instance can be done using the littlefs list command. The file sizes are printed with each file in the
directory tree.

Command Line Syntax
$ commander littlefs list [--infile <filename> --device <device>]

Command Line Input Example

$ commander littlefs list --infile Ifs.hex --device SiWG917M111MGTBA

This command line lists the files in the LittleFS instance 'lfs.hex'.

Command Line Output Example

Reading LittleFS instance from Ifs_hex...
Parsing file Ifs_hex...
Filesystem contents:

/

| test-output/

] | log.txt (132 B)

| lib/

] | beep.-mp3 (3827 B)
DONE

6.28.5 Add Files to a LittleFS Instance

Adding files to a LittleFS instance is done using the littlefs add command. Singular files may be added using the --Ffile option,
whereas directories can be added using the --dir option. If any directories are specified, Commander will traverse those directories
and recursively add all contained files and subdirectories, maintaining the directory structure in the resulting LittleFS instance.

All filenames/paths provided to Commander must be relative to the current working directory of Commander.

Command Line Syntax

$ commander littlefs add --outfile <filename> [--infile <filename> --device <device>] [--file <filename> --dir
<directory>]

Command Line Input Example

$ commander littlefs add --outfile Ifs_hex --infile Ifs-empty.-hex --device SiWG917M111IMGTBA --file src/
index.html --dir icons

This command line adds the file 'index.html" and the directory 'icons' (along with any contained files and subdirectories) to the LittleFS
instance in 'lfs-empty.hex' and stores the updated LittleFS instance in 'Ifs.hex'.

Command Line Output Example

Reading LittleFS instance from Ifs-empty.hex...
Parsing file Ifs-empty.hex. ..

Added file: Zicons/templates/template.png
Added file: /icons/header.jpeg

Added file: /icons/ok.ico

Added file: /icons/thumbnail.png

Added file: /src/index.html

LittleFS instance written to Ifs_hex.

DONE

silabs.com | Building a more connected world. Rev. 3.1 | 139

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.28.6 Remove Files From a LittleFS Instance

Removing files from a LittleFS instance is done using the littlefs remove command. Singular files may be removed using the --
file option, whereas directories can be removed using the --dir option. If any directories are specified, Commander will traverse
those directories and recursively remove all contained files and subdirectories.

All flenames/paths provided to Commander must be absolute with respect to the LittleFS instance's root directory, /.

Command Line Syntax

$ commander littlefs remove --outfile <filename> [--infile <filename> --device <device>] [--file <filename> --
dir <directory>]

Command Line Input Example

$ commander littlefs remove --outfile Ifs-new.hex --infile Ifs.hex --device SIWG917M111MGTBA --file /src/
index.html --dir /Zicons

This command line removes the file 'index.html' and the directory 'icons' (along with any contained files and subdirectories) from the
LittleFS instance in 'lfs.hex' and stores the updated LittleFS instance in 'lfs-new.hex'.

Command Line Output Example

Reading LittleFS instance from Ifs_hex...
Parsing file Ifs.hex...

Removed file: /icons/templates/template.png
Removed directory: /icons/templates
Removed file: /icons/header.jpeg

Removed file: /icons/ok.ico

Removed file: /icons/thumbnail.png
Removed directory: /icons

Removed file: /src/index.html

LittleFS instance written to Ifs-new.hex.
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 140

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.28.7 Extract Files From a LittleFS Instance

Extracting files from a LittleFS instance is done using the littlefs extract command. Singular files may be extracted using the --
file option, whereas directories can be extracted using the --dir option. If any directories are extracted, Commander will traverse
those directories and recursively extract all files and subdirectories.

All flenames/paths provided to Commander must be absolute with respect to the LittleFS instance's root directory, /.

The destination folder of the extracted files is specified using the --dest option. If you want the extracted files to be compressed and
placed in a zip file, the —-zip option can be used in place of the --dest option.

If only singular files (using the --Fi le option) are being extracted, the individual files' paths will be ignored upon extraction, placing the
files directly in the destination specified by the --dest/--zip option.

If no files or directories are specified, Commander will extract all the files in the LittleFS instance.

Note: Zip file compression functionality requires Microsoft PowerShell version 5.0 or above on Windows, and the zip and unzip sys-
tem utilities on Linux/Mac

Command Line Syntax

$ commander littlefs extract [--infile <filename> --device <device>] [--file <filename> --dir <directory> --
dest <directory> --zip <filename>]

Command Line Input Example

$ commander littlefs extract --infile Ifs_hex --device SiWG917M111MGTBA --zip items.zip

This command line extracts all the files in the LittleFS instance 'lfs.hex', compresses the files and stores them in a zip archive at
'items.zip'.

Command Line Output Example

Reading LittleFS instance from Ifs_hex...

Parsing file Ifs.hex...

Zip archive created at '"/Users/username/Desktop/items.zip".
DONE

silabs.com | Building a more connected world. Rev. 3.1 | 141

UG162: Simplicity Commander Reference Guide
Software Revision History

7. Software Revision History

The following subsections summarize the new features of Simplicity Commander by version number.

7.1 Version 1.17
2024-11-11

silabs.com | Building a more connected world. Rev. 3.1 | 142

UG162: Simplicity Commander Reference Guide
Software Revision History

Added these Simplicity Commander commands:

Section 6.8 Kit Utility Commands
* 6.8.9 Get or Change Target Voltage
* 6.8.10 Get or Change Target Power

Section 6.13 Advanced Energy Monitor Commands
* 6.13.4 Calibrate the Advanced Energy Monitor

Section 6.21 RPS Commands

+ 6.21.8 Create an RPS File for External Signing
* 6.21.9 Externally Sign an RPS File

* 6.21.10 Load RPS Image Onto Device

Section 6.25 Manufacturing Commands

* 6.25.12 Provision OTP Security Keys to the Device
» 6.25.13 List Available Device Profiles

* 6.25.14 Provision Device Profile to the Device

* 6.25.15 Protect Device Configuration

Section 6.28 LittleFS Commands

+ 6.28 LittleFS Commands

+ 6.28.1 Initialize an Empty LittleFS Instance

* 6.28.2 Get Information About a LittleFS Instance
+ 6.28.3 Dump a LittleFS Instance From Device

* 6.28.4 List Contents in a LittleFS Instance

* 6.28.5 Add Files to a LittleFS Instance

» 6.28.6 Remove Files From a LittleFS Instance

* 6.28.7 Extract Files From a LittleFS Instance

Modified these Simplicity Commander commands:

Section 6.15 NVM3 Commands
¢ 6.15 NVM3 Commands

Section 6.18 Util Commands
* 6.18.4 Key Config Generation

Section 6.19 OTA Commands
* 6.19.5 Create an OTA File for External Signing

Section 6.21 RPS Commands
* 6.21.5 Create a Secure RPS Application Image

Section 6.23 RTT Commands
* 6.23.3 RTT Communications Over Virtual Terminals
* 6.23.4 RTT Communications With a Custom RTT Buffer Configuration

Section 6.24 Serial Commands

* 6.24.1 Load an RPS Application Over Serial

* 6.24.2 Lock Debug Access to M4/NWP Core

* 6.24.3 Unlock Debug Access to M4/NWP Core With Existing Token

* 6.24.4 Unlock Debug Access to M4/NWP Core Without Existing Token

Section 6.25 Manufacturing Commands

* 6.25 Manufacturing Commands

* 6.25.1 List Available Memory Regions

* 6.25.5 Write Memory Region Data to Device

* 6.25.11 Provision Security Keys to the Device

* 6.25.16 Get Information About Device Configuration

silabs.com | Building a more connected world. Rev. 3.1 | 143

UG162: Simplicity Commander Reference Guide
Software Revision History

Section 6.26 VCOM Commands
* 6.26.1 Configure Adapter VCOM Settings

Section 6.27 Completion Commands
* 6.27 Completion Commands

7.2 Version 1.16
2023-09-28
Added these Simplicity Commander commands:

Section 6.8 Kit Utility Commands
» 6.8.8 Get or Change Adapter Nickname

Section 6.24 Serial Commands
e 6.24.5 Extract Device Part Number

Section 6.25 Manufacturing Commands

* 6.25.3 Read Specific Fields From Memory Region
* 6.25.4 Read Address Range From Device

* 6.25.6 Write Data to Address

* 6.25.8 Erase Address Range From Device

* 6.25.9 Dump Configuration Data of Device

Section 6.26 VCOM Commands
* 6.26.1 Configure Adapter VCOM Settings
¢ 6.26.2 VCOM Communications

Section 6.27 Completion Commands
* 6.27.1 Generate Completion Script
* 6.27.2 Install Completion Script

Modified these Simplicity Commander commands:

Section 6.8 Kit Utility Commands
* 6.8.2 Kit Information Probe

Section 6.13 Advanced Energy Monitor Commands
* 6.13.1 Measure Average Current in a Time Window

Section 6.18 Util Commands
* 6.18.10 Get RAM and Flash Usage of an ELF Application

Section 6.24 Serial Commands
* 6.24.1 Load an RPS Application Over Serial
* 6.24.2 Lock Debug Access to M4/NWP Core

Section 6.25 Manufacturing Commands

* 6.25.1 List Available Memory Regions

* 6.25.2 Read Memory Region Data From Device

* 6.25.5 Write Memory Region Data to Device

* 6.25.7 Erase Memory Region Data From Device

* 6.25.10 Initialize PUF And Generate Activation Code
* 6.25.11 Provision Security Keys to the Device

* 6.25.16 Get Information About Device Configuration

7.3 Version 1.15
2023-05-16

silabs.com | Building a more connected world. Rev. 3.1 | 144

UG162: Simplicity Commander Reference Guide
Software Revision History

Added these Simplicity Commander commands:

Section 6.18 Util Commands
* 6.18.10 Get RAM and Flash Usage of an ELF Application
* 6.18.11 Print Header Information of an RPS File

Section 6.19 OTA Commands
¢ 6.19.8 Create an OTA Matter File
¢ 6.19.9 Parse a Matter OTA File

Section 6.21 RPS Commands

* 6.21.4 Create an RPS File For Upgrading On-Device Key

* 6.21.5 Create a Secure RPS Application Image

* 6.21.6 Convert an Existing RPS Application Image

* 6.21.7 Combine Multiple RPS Images Into a Single RPS File

Section 6.22 RTT Commands

* 6.23.1 RTT Communications Until a Marker is Found

* 6.23.2 RTT Communications Until Timeout

* 6.23.3 RTT Communications Over Virtual Terminals

* 6.23.4 RTT Communications With a Custom RTT Buffer Configuration

Section 6.23 VUART Commands
¢ 6.22.2 VUART Communications Until a Marker is Found
¢ 6.22.1 VUART Communications Until Timeout

Section 6.24 Serial Commands

* 6.24.1 Load an RPS Application Over Serial

* 6.24.2 Lock Debug Access to M4/NWP Core

* 6.24.3 Unlock Debug Access to M4/NWP Core With Existing Token

* 6.24.4 Unlock Debug Access to M4/NWP Core Without Existing Token

Section 6.25 Manufacturing Commands

* 6.25.1 List Available Memory Regions

6.25.2 Read Memory Region Data From Device
6.25.5 Write Memory Region Data to Device

* 6.25.7 Erase Memory Region Data From Device

* 6.25.10 Initialize PUF And Generate Activation Code
* 6.25.11 Provision Security Keys to the Device

Modified these Simplicity Commander commands:

Section 6.14 Serial Wire Output Read Commands
* 6.14.1 Configure SWO Speed

* 6.14.3 Read SWO Until a Marker Is Found

* 6.14.4 Dump Hex Encoded SWO Output

Section 6.20 Post-Build Command
* 6.20.1 Execute a Project Post-Build File

Section 6.21 RPS Commands

* 6.21.1 Create an RPS File From a Binary Image
* 6.21.2 Create an RPS File From an ELF Image

* 6.21.3 Create an RPS File from a Hex/s37 Image

7.4 Version 1.14
2022-11-18

silabs.com | Building a more connected world. Rev. 3.1 | 145

UG162: Simplicity Commander Reference Guide
Software Revision History

Added these Simplicity Commander commands:

Section 6.13 Advanced Energy Monitor Measure Commands
* 6.13.1 Measure Average Current in a Time Window

* 6.13.2 Log Current Measurements as Time Series Data

» 6.13.3 Start Logging on Trigger Event

Section 6.19 OTA Commands

* 6.19.4 Sign an OTA File

* 6.19.5 Create an OTA File for External Signing
* 6.19.6 Externally Sign an OTA File

* 6.19.7 Verify Signature of an OTA File

Section 6.21 RPS Commands

* 6.21.1 Create an RPS File From a Binary Image
* 6.21.2 Create an RPS File From an ELF Image

* 6.21.3 Create an RPS File from a Hex/s37 Image

Modified these Simplicity Commander commands:

Section 6.17 Security Commands
* 6.17.1 Get Device Status

Section 6.20 Post-Build Command
* 6.20.1 Execute a Project Post-Build File

7.5 Version 1.13
2022-05-06
Added these Simplicity Commander commands.

Section 6.5 Convert and Modify Commands
* 6.5.10 Add a Trust Zone Decryption Key
* 6.5.11 Extract Sections from ELF Files

Section 6.7 GBL Commands

* 6.7.13 Create a GBL File from an ELF File

* 6.7.15 Create a GBL File with Version Dependencies

* 6.7.14 Create an Encrypted GBL File with an Unencrypted Secure Element Upgrade File

Section 6.18 Util Commands
* 6.18.9 Print Section Header Information from an ELF File

Section 6.19 OTA Commands

* 6.19.1 Create an OTA Bootloader File
* 6.19.3 Print OTA File Information

* 6.19.2 Create a Null OTA File

Section 6.20 Post-Build Command
* 6.20.1 Execute a Project Post-Build File

7.6 Version 1.12

2021-11-15

Added debug modes:

6.8.4 Adapter Debug Mode Command

silabs.com | Building a more connected world.

Rev. 3.1 | 146

UG162: Simplicity Commander Reference Guide
Software Revision History

7.7 Version 1.11
2021-05-14
Added a general command option:

3.3.7 Timestamp (--timestamp)

7.8 Version 1.10

2020-11-19

Revised the implementation details for these commands:
6.1.1 Flash Image File

6.3 Memory Read Commands

2020-05-08

* Resolved issue related to external flash in certain scenarios
» Added these Security commands:

6.17.19 Write AES Decryption Key

6.17.20 Read Device Certificates
6.17.21 Vault Device Attestation

+ Added VCOM port information to output from adapter probe command

7.9 Version 1.9
2020-03-09
» Added this Convert and Modify File command:

Signing an Application for Secure Boot using an Intermediary Certificate
* Added these Security commands:

Disable Tamper

Read User Configuration
» Added these Util commands:

Key Generation
Generating a Signing Key
Key to Token

Generate Certificate

Sign Certificate

Verify Signature

Application Information

» Added clarifying details in 4.5 Memory Regions regarding mass erase and differences between EFR32 Series 1 and Series 2 devi-

ces.

silabs.com | Building a more connected world.

Rev. 3.1 | 147

UG162: Simplicity Commander Reference Guide
Software Revision History

7.10 Version 1.8
2019-11-21

» Added the security commands that support Secure Element functionality. See 5. Security Overview and 6.17 Security Commands
for details.

* Improved GUI
» Support for EFR32xG2x devices
» Added flash map feature
» Added blank check feature

7.11 Version 1.7
2018-11-28

* Added CTUNE manufacturing token commands.
» Added support for EFR32XG21 devices.
» Added support for generating Secure Element upgrade GBL files.

7.12 Version 1.5
2018-10-02

» Added support for analyzing the memory usage of the application using an Application Address Table (AAT).

7.13 Version 1.4
2018-09-19

» Added support for module part numbers (e.g. BGM111) as --device parameter
* Module part numbers will be read from the device when it exists (new modules only)

7.14 Version 1.3

2018-08-14
» Added support for manipulating and writing NVM3 data.
» Added support for custom token definition files in any location.

7.15 Version 1.2
2018-03-23

» Added support for creating GBL images using the LZMA compression algorithm.

7.16 Version 1.1
2018-01-19

» Added support for writing CRC32 to an image as a means of integrity check when not using Secure Boot.
* Added the nvm3 command which supports reading NVM3 data from a device and parsing an image file containing NVM3 data.

7.17 Version 1.0

2017-11-28

» Added support for EM3xx devices.

silabs.com | Building a more connected world. Rev. 3.1 | 148

UG162: Simplicity Commander Reference Guide
Software Revision History

7.18 Version 0.25

2017-06-09
Added support for Iz4 compression of GBL files:

* gbl create --compress 1z4

7.19 Version 0.24

2017-04-25
Added commands that support the Gecko Bootloader Security features:

* convert --secureboot

* gbl keygen --type ecc-p256
* gbl keyconvert

* gbl create

--bootloader option
--sign option

--extsign option
* gbl sign

7.20 Version 0.22
2017-03-03
Added commands that support the Gecko Bootloader (GBL) file format:

* gbl create
* gbl parse
* gbl keygen

7.21 Version 0.21
2017-02-02

Added commands:
* ebl create
* ebl parse

Deprecated and hid these commands that only support version 2 of the EBL format:

* ebl encrypt
* ebl decrypt

These commands have been replaced by ebl create and ebl parse which support both version 2 and 3 of the EBL format.
Changed command:
» Creating and parsing EBL files using the convert command has been deprecated, but still supports parsing and creating EBL v2
files for backwards compatibility. New applications should use the ebl create and ebl parse commands instead.
7.22 Version 0.16
2016-06-16
Added commands:

* aem measure
* adapter ip
* swo read

silabs.com | Building a more connected world. Rev. 3.1 | 149

UG162: Simplicity Commander Reference Guide
Software Revision History

7.23 Version 0.15
2016-04-27
Added commands:

* extflash
* adapter reset
* adapter dbgmode

7.24 Version 0.14
2016-02-05
Added commands:

* device lock

* device protect

* device pageerase
* device recover

7.25 Version 0.13

Not released
* Added tokenheader command.

7.26 Version 0.12

2016-01-20
» Added support for EFR32 custom tokens.

7.27 Version 0.11
2016-01-15

Initial release.

silabs.com | Building a more connected world. Rev. 3.1 | 150

loT Portfolio Quality Support & Community

www.silabs.com/products www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personalinjury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32¢, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’'s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio® Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are
trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis aregistered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	Table of Contents
	1. Introduction
	2. File Format Overview
	2.1 Motorola S-record (s37) File Format
	2.2 Update Image File Formats
	2.3 Intel HEX-32 File Format

	3. General Information
	3.1 Installing Simplicity Commander
	3.2 Command Line Syntax
	3.3 General Options
	3.3.1 Help (--help)
	3.3.2 Version (--version)
	3.3.3 Device (--device <device name>)
	3.3.4 J-Link Connection Options
	3.3.5 Debug Interface Configuration
	3.3.6 Graphical User Interface
	3.3.7 Timestamp (--timestamp)

	3.4 Output and Exit Status

	4. EFR32 Custom Tokens
	4.1 Introduction
	4.2 Custom Token Groups
	4.3 Creating Custom Token Groups
	4.4 Defining Tokens
	4.5 Memory Regions
	4.6 Token File Format Description
	4.7 Using Custom Token Files
	4.8 Using Custom Token Files in Any Location

	5. Security Overview
	5.1 Security Store
	5.2 Access Certificate
	5.3 Challenge and Command Signing

	6. Simplicity Commander Commands
	6.1 Device Flashing Commands
	6.1.1 Flash Image File
	6.1.2 Flash Using IP Address without Verification and Reset
	6.1.3 Flash Several Files
	6.1.4 Patch Flash
	6.1.5 Patch Using Input File
	6.1.6 Flash Tokens

	6.2 Flash Verification Command
	6.3 Memory Read Commands
	6.3.1 Print Flash Contents
	6.3.2 Dump Flash Contents to File

	6.4 Token Commands
	6.4.1 Print Tokens
	6.4.2 Dump Tokens to File
	6.4.3 Dump Tokens from Image File
	6.4.4 Generate C Header Files from Token Groups

	6.5 Convert and Modify File Commands
	6.5.1 Combine Two Files
	6.5.2 Define Specific Bytes
	6.5.3 Define Tokens
	6.5.4 Dump File Contents
	6.5.5 Signing an Application for Secure Boot
	6.5.6 Signing an Application for Secure Boot using a Hardware Security Module
	6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware Security Module
	6.5.8 Adding a CRC32 for Gecko Bootloader
	6.5.9 Signing an Application for Secure Boot using an Intermediary Certificate
	6.5.10 Add a Trust Zone Decryption Key
	6.5.11 Extract Sections from ELF Files

	6.6 EBL Commands
	6.6.1 Print EBL Information
	6.6.2 EBL Key Generation
	6.6.3 EBL File Creation
	6.6.4 EBL File Parsing
	6.6.5 Memory Usage Information from AAT

	6.7 GBL Commands
	6.7.1 GBL File Creation
	6.7.2 GBL File Creation with Compression
	6.7.3 Create a GBL File for Bootloader Upgrade
	6.7.4 Creating a GBL File for Secure Element Upgrade
	6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Application
	6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module
	6.7.7 Creating a Signed GBL File Using a Hardware Security Module
	6.7.8 GBL File Parsing
	6.7.9 GBL Key Generation
	6.7.10 Generating a Signing Key
	6.7.11 Generate a Signing Key Using a Hardware Security Module
	6.7.12 Creating a Signed GBL File Using a Hardware Security Module
	6.7.13 Create a GBL File from an ELF File
	6.7.14 Create an Encrypted GBL File with an Unencrypted Secure Element Upgrade File
	6.7.15 Create a GBL File with Version Dependencies
	6.7.16 Create a Delta GBL File

	6.8 Kit Utility Commands
	6.8.1 Firmware Upgrade
	6.8.2 Kit Information Probe
	6.8.3 Adapter Reset Command
	6.8.4 Adapter Debug Mode Command
	6.8.5 List Adapter IP Configuration Command
	6.8.6 Adapter DHCP Command
	6.8.7 Set Static IP Configuration Command
	6.8.8 Get or Change Adapter Nickname
	6.8.9 Get or Change Target Voltage
	6.8.10 Get or Change Target Power

	6.9 Device Erase Commands
	6.9.1 Erase Chip
	6.9.2 Erase Region
	6.9.3 Erase Pages in Address Range

	6.10 Device Lock and Protection Commands
	6.10.1 Debug Lock
	6.10.2 Debug Unlock
	6.10.3 Write Protect Flash Ranges
	6.10.4 Write Protect Flash Region
	6.10.5 Disable Write Protection

	6.11 Device Utility Commands
	6.11.1 Device Information Command
	6.11.2 Device Reset Command
	6.11.3 Device Recovery Command
	6.11.4 Device Z-Wave QR Code Command

	6.12 External SPI Flash Commands
	6.12.1 Erase External SPI Flash Command
	6.12.2 Read External SPI Flash Command
	6.12.3 Write External SPI Flash Command

	6.13 Advanced Energy Monitor Commands
	6.13.1 Measure Average Current in a Time Window
	6.13.2 Log Current Measurements as Time Series Data
	6.13.3 Start Logging on Trigger Event
	6.13.4 Calibrate the Advanced Energy Monitor

	6.14 Serial Wire Output Read Commands
	6.14.1 Configure SWO Speed
	6.14.2 Read SWO Until Timeout
	6.14.3 Read SWO Until a Marker Is Found
	6.14.4 Dump Hex Encoded SWO Output

	6.15 NVM3 Commands
	6.15.1 Read NVM3 Data From a Device
	6.15.2 Parse NVM3 Data
	6.15.3 Initialize NVM3 Area in a File
	6.15.4 Write NVM3 Data Using a Text File
	6.15.5 Write NVM3 Data Using CLI Options

	6.16 CTUNE Commands
	6.16.1 CTUNE Get Command
	6.16.2 CTUNE Set Command
	6.16.3 CTUNE Autoset Command

	6.17 Security Commands
	6.17.1 Get Device Status
	6.17.2 Generate Key Pair
	6.17.3 Write Public Key to Device
	6.17.4 Read Public Key from Device
	6.17.5 Configure Lock Options
	6.17.6 Lock Debug Access
	6.17.7 Secure Debug Unlock
	6.17.8 Disable Tamper
	6.17.9 Device Erase using Secure Element
	6.17.10 Disable Device Erase
	6.17.11 Roll Challenge
	6.17.12 Generate Example Authorization File
	6.17.13 Generate Access Certificate
	6.17.14 Generate Unsigned Command File
	6.17.15 Generate Example Configuration File
	6.17.16 Write User Configuration
	6.17.17 Read User Configuration
	6.17.18 Get Security Store Path
	6.17.19 Write AES Decryption Key
	6.17.20 Read Device Certificates
	6.17.21 Vault Device Attestation

	6.18 Util Commands
	6.18.1 Key Generation
	6.18.2 Generating a Signing Key
	6.18.3 Key to Token
	6.18.4 Key Config Generation
	6.18.5 Generate Certificate
	6.18.6 Sign Certificate
	6.18.7 Verify Signature
	6.18.8 Application Information
	6.18.9 Print Section Header Information from an ELF File
	6.18.10 Get RAM and Flash Usage of an ELF Application
	6.18.11 Print Header Information of an RPS File

	6.19 OTA Commands
	6.19.1 Create an OTA Bootloader File
	6.19.2 Create a Null OTA File
	6.19.3 Print OTA File Information
	6.19.4 Sign an OTA File
	6.19.5 Create an OTA File for External Signing
	6.19.6 Externally Sign an OTA File
	6.19.7 Verify Signature of an OTA File
	6.19.8 Create an OTA Matter File
	6.19.9 Parse a Matter OTA File

	6.20 Post-Build Command
	6.20.1 Execute a Project Post-Build File

	6.21 RPS Commands
	6.21.1 Create an RPS File From a Binary Image
	6.21.2 Create an RPS File From an ELF Image
	6.21.3 Create an RPS File from a Hex/s37 Image
	6.21.4 Create an RPS File For Upgrading On-Device Key
	6.21.5 Create a Secure RPS Application Image
	6.21.6 Convert an Existing RPS Application Image
	6.21.7 Combine Multiple RPS Images Into a Single RPS File
	6.21.8 Create an RPS File for External Signing
	6.21.9 Externally Sign an RPS File
	6.21.10 Load RPS Image Onto Device

	6.22 VUART Commands
	6.22.1 VUART Communications Until Timeout
	6.22.2 VUART Communications Until a Marker is Found

	6.23 RTT Commands
	6.23.1 RTT Communications Until a Marker is Found
	6.23.2 RTT Communications Until Timeout
	6.23.3 RTT Communications Over Virtual Terminals
	6.23.4 RTT Communications With a Custom RTT Buffer Configuration

	6.24 Serial Commands
	6.24.1 Load an RPS Application Over Serial
	6.24.2 Lock Debug Access to M4/NWP Core
	6.24.3 Unlock Debug Access to M4/NWP Core With Existing Token
	6.24.4 Unlock Debug Access to M4/NWP Core Without Existing Token
	6.24.5 Extract Device Part Number

	6.25 Manufacturing Commands
	6.25.1 List Available Memory Regions
	6.25.2 Read Memory Region Data From Device
	6.25.3 Read Specific Fields From Memory Region
	6.25.4 Read Address Range From Device
	6.25.5 Write Memory Region Data to Device
	6.25.6 Write Data to Address
	6.25.7 Erase Memory Region Data From Device
	6.25.8 Erase Address Range From Device
	6.25.9 Dump Configuration Data of Device
	6.25.10 Initialize PUF And Generate Activation Code
	6.25.11 Provision Security Keys to the Device
	6.25.12 Provision OTP Security Keys to the Device
	6.25.13 List Available Device Profiles
	6.25.14 Provision Device Profile to the Device
	6.25.15 Protect Device Configuration
	6.25.16 Get Information About Device Configuration

	6.26 VCOM Commands
	6.26.1 Configure Adapter VCOM Settings
	6.26.2 VCOM Communications

	6.27 Completion Commands
	6.27.1 Generate Completion Script
	6.27.2 Install Completion Script

	6.28 LittleFS Commands
	6.28.1 Initialize an Empty LittleFS Instance
	6.28.2 Get Information About a LittleFS Instance
	6.28.3 Dump a LittleFS Instance From Device
	6.28.4 List Contents in a LittleFS Instance
	6.28.5 Add Files to a LittleFS Instance
	6.28.6 Remove Files From a LittleFS Instance
	6.28.7 Extract Files From a LittleFS Instance

	7. Software Revision History
	7.1 Version 1.17
	7.2 Version 1.16
	7.3 Version 1.15
	7.4 Version 1.14
	7.5 Version 1.13
	7.6 Version 1.12
	7.7 Version 1.11
	7.8 Version 1.10
	7.9 Version 1.9
	7.10 Version 1.8
	7.11 Version 1.7
	7.12 Version 1.5
	7.13 Version 1.4
	7.14 Version 1.3
	7.15 Version 1.2
	7.16 Version 1.1
	7.17 Version 1.0
	7.18 Version 0.25
	7.19 Version 0.24
	7.20 Version 0.22
	7.21 Version 0.21
	7.22 Version 0.16
	7.23 Version 0.15
	7.24 Version 0.14
	7.25 Version 0.13
	7.26 Version 0.12
	7.27 Version 0.11

